Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,121 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
import os
|
7 |
-
import pandas as pd
|
8 |
-
import logging
|
9 |
-
|
10 |
-
# Disable GPU if not available (for Hugging Face Spaces)
|
11 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
12 |
-
|
13 |
-
# Setup logging
|
14 |
-
logging.basicConfig(level=logging.INFO)
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
-
|
17 |
-
# Configuration
|
18 |
-
MODEL_REPO = "Ahmedhassan54/Image-
|
19 |
-
MODEL_FILE = "
|
20 |
-
|
21 |
-
# Initialize model
|
22 |
-
model = None
|
23 |
-
|
24 |
-
def load_model():
|
25 |
-
global model
|
26 |
-
try:
|
27 |
-
logger.info("Downloading model...")
|
28 |
-
model_path = hf_hub_download(
|
29 |
-
repo_id=MODEL_REPO,
|
30 |
-
filename=MODEL_FILE,
|
31 |
-
cache_dir=".",
|
32 |
-
force_download=True
|
33 |
-
)
|
34 |
-
logger.info(f"Model path: {model_path}")
|
35 |
-
|
36 |
-
# Explicitly disable GPU
|
37 |
-
with tf.device('/CPU:0'):
|
38 |
-
model = tf.keras.models.load_model(model_path)
|
39 |
-
logger.info("Model loaded successfully!")
|
40 |
-
except Exception as e:
|
41 |
-
logger.error(f"Model loading failed: {str(e)}")
|
42 |
-
model = None
|
43 |
-
|
44 |
-
# Load model at startup
|
45 |
-
load_model()
|
46 |
-
|
47 |
-
def classify_image(image):
|
48 |
-
try:
|
49 |
-
if image is None:
|
50 |
-
return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
51 |
-
|
52 |
-
# Convert to PIL Image if numpy array
|
53 |
-
if isinstance(image, np.ndarray):
|
54 |
-
image = Image.fromarray(image.astype('uint8'))
|
55 |
-
|
56 |
-
# Preprocess
|
57 |
-
image = image.resize((150, 150))
|
58 |
-
img_array = np.array(image) / 255.0
|
59 |
-
if len(img_array.shape) == 3:
|
60 |
-
img_array = np.expand_dims(img_array, axis=0)
|
61 |
-
|
62 |
-
# Predict
|
63 |
-
if model is not None:
|
64 |
-
with tf.device('/CPU:0'):
|
65 |
-
pred = model.predict(img_array, verbose=0)
|
66 |
-
confidence = float(pred[0][0])
|
67 |
-
else:
|
68 |
-
confidence = 0.75 # Demo value
|
69 |
-
|
70 |
-
results = {
|
71 |
-
"Cat": round(1 - confidence, 4),
|
72 |
-
"Dog": round(confidence, 4)
|
73 |
-
}
|
74 |
-
|
75 |
-
plot_data = pd.DataFrame({
|
76 |
-
'Class': ['Cat', 'Dog'],
|
77 |
-
'Confidence': [1 - confidence, confidence]
|
78 |
-
})
|
79 |
-
|
80 |
-
return results, plot_data
|
81 |
-
|
82 |
-
except Exception as e:
|
83 |
-
logger.error(f"Error: {str(e)}")
|
84 |
-
return {"Error": str(e)}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
85 |
-
|
86 |
-
# Interface
|
87 |
-
with gr.Blocks() as demo:
|
88 |
-
gr.Markdown("# 🐾 Cat vs Dog Classifier 🦮")
|
89 |
-
|
90 |
-
with gr.Row():
|
91 |
-
with gr.Column():
|
92 |
-
img_input = gr.Image(type="pil")
|
93 |
-
classify_btn = gr.Button("Classify", variant="primary")
|
94 |
-
|
95 |
-
with gr.Column():
|
96 |
-
label_out = gr.Label(num_top_classes=2)
|
97 |
-
plot_out = gr.BarPlot(
|
98 |
-
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
|
99 |
-
x="Class", y="Confidence", y_lim=[0,1]
|
100 |
-
)
|
101 |
-
|
102 |
-
classify_btn.click(
|
103 |
-
classify_image,
|
104 |
-
inputs=img_input,
|
105 |
-
outputs=[label_out, plot_out]
|
106 |
-
)
|
107 |
-
|
108 |
-
# Examples section
|
109 |
-
gr.Examples(
|
110 |
-
examples=[
|
111 |
-
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
|
112 |
-
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
|
113 |
-
],
|
114 |
-
inputs=img_input,
|
115 |
-
outputs=[label_out, plot_out],
|
116 |
-
fn=classify_image,
|
117 |
-
cache_examples=True
|
118 |
-
)
|
119 |
-
|
120 |
-
if __name__ == "__main__":
|
121 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import os
|
7 |
+
import pandas as pd
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Disable GPU if not available (for Hugging Face Spaces)
|
11 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
12 |
+
|
13 |
+
# Setup logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Configuration
|
18 |
+
MODEL_REPO = "Ahmedhassan54/Image-classifier"
|
19 |
+
MODEL_FILE = "final_model.h5"
|
20 |
+
|
21 |
+
# Initialize model
|
22 |
+
model = None
|
23 |
+
|
24 |
+
def load_model():
|
25 |
+
global model
|
26 |
+
try:
|
27 |
+
logger.info("Downloading model...")
|
28 |
+
model_path = hf_hub_download(
|
29 |
+
repo_id=MODEL_REPO,
|
30 |
+
filename=MODEL_FILE,
|
31 |
+
cache_dir=".",
|
32 |
+
force_download=True
|
33 |
+
)
|
34 |
+
logger.info(f"Model path: {model_path}")
|
35 |
+
|
36 |
+
# Explicitly disable GPU
|
37 |
+
with tf.device('/CPU:0'):
|
38 |
+
model = tf.keras.models.load_model(model_path)
|
39 |
+
logger.info("Model loaded successfully!")
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Model loading failed: {str(e)}")
|
42 |
+
model = None
|
43 |
+
|
44 |
+
# Load model at startup
|
45 |
+
load_model()
|
46 |
+
|
47 |
+
def classify_image(image):
|
48 |
+
try:
|
49 |
+
if image is None:
|
50 |
+
return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
51 |
+
|
52 |
+
# Convert to PIL Image if numpy array
|
53 |
+
if isinstance(image, np.ndarray):
|
54 |
+
image = Image.fromarray(image.astype('uint8'))
|
55 |
+
|
56 |
+
# Preprocess
|
57 |
+
image = image.resize((150, 150))
|
58 |
+
img_array = np.array(image) / 255.0
|
59 |
+
if len(img_array.shape) == 3:
|
60 |
+
img_array = np.expand_dims(img_array, axis=0)
|
61 |
+
|
62 |
+
# Predict
|
63 |
+
if model is not None:
|
64 |
+
with tf.device('/CPU:0'):
|
65 |
+
pred = model.predict(img_array, verbose=0)
|
66 |
+
confidence = float(pred[0][0])
|
67 |
+
else:
|
68 |
+
confidence = 0.75 # Demo value
|
69 |
+
|
70 |
+
results = {
|
71 |
+
"Cat": round(1 - confidence, 4),
|
72 |
+
"Dog": round(confidence, 4)
|
73 |
+
}
|
74 |
+
|
75 |
+
plot_data = pd.DataFrame({
|
76 |
+
'Class': ['Cat', 'Dog'],
|
77 |
+
'Confidence': [1 - confidence, confidence]
|
78 |
+
})
|
79 |
+
|
80 |
+
return results, plot_data
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error: {str(e)}")
|
84 |
+
return {"Error": str(e)}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
|
85 |
+
|
86 |
+
# Interface
|
87 |
+
with gr.Blocks() as demo:
|
88 |
+
gr.Markdown("# 🐾 Cat vs Dog Classifier 🦮")
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column():
|
92 |
+
img_input = gr.Image(type="pil")
|
93 |
+
classify_btn = gr.Button("Classify", variant="primary")
|
94 |
+
|
95 |
+
with gr.Column():
|
96 |
+
label_out = gr.Label(num_top_classes=2)
|
97 |
+
plot_out = gr.BarPlot(
|
98 |
+
pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
|
99 |
+
x="Class", y="Confidence", y_lim=[0,1]
|
100 |
+
)
|
101 |
+
|
102 |
+
classify_btn.click(
|
103 |
+
classify_image,
|
104 |
+
inputs=img_input,
|
105 |
+
outputs=[label_out, plot_out]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Examples section
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
|
112 |
+
["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
|
113 |
+
],
|
114 |
+
inputs=img_input,
|
115 |
+
outputs=[label_out, plot_out],
|
116 |
+
fn=classify_image,
|
117 |
+
cache_examples=True
|
118 |
+
)
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|