ERA_V2_S13 / app.py
AkashDataScience's picture
Added Top N classes
30b6d93
raw
history blame
3.34 kB
import torch, torchvision
from torchvision import transforms
import numpy as np
import gradio as gr
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from resnet import ResNet18
import gradio as gr
model = ResNet18()
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
inv_normalize = transforms.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23]
)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
def resize_image_pil(image, new_width, new_height):
# Convert to PIL image
img = Image.fromarray(np.array(image))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
# Resize
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
# Crop to exact size
resized = resized.crop((0, 0, new_width, new_height))
return resized
def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1, top_predictions=3):
input_img = resize_image_pil(input_img, 32, 32)
input_img = np.array(input_img)
org_img = input_img
input_img = input_img.reshape((32, 32, 3))
transform = transforms.ToTensor()
input_img = transform(input_img)
input_img = input_img
input_img = input_img.unsqueeze(0)
outputs = model(input_img)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
_, prediction = torch.max(outputs, 1)
if is_grad_cam:
target_layers = [model.layer2[target_layer_number]]
cam = GradCAM(model=model, target_layers=target_layers)
grayscale_cam = cam(input_tensor=input_img, targets=None)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
else:
visualization = None
# Sort the confidences dictionary based on confidence values
sorted_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True))
# Pick the top n predictions
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
return classes[prediction[0].item()], visualization, top_n_confidences
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
demo = gr.Interface(
inference,
inputs = [
gr.Image(width=256, height=256, label="Input Image"),
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
gr.Checkbox(label="Show GradCAM"),
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes")
],
outputs = [
"text",
gr.Image(width=256, height=256, label="Output"),
gr.Label(label="Top Classes")
],
title = title,
description = description,
examples = examples,
)
demo.launch()