Spaces:
Sleeping
Sleeping
Commit
·
30b6d93
1
Parent(s):
47b7204
Added Top N classes
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ def resize_image_pil(image, new_width, new_height):
|
|
39 |
|
40 |
return resized
|
41 |
|
42 |
-
def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1):
|
43 |
input_img = resize_image_pil(input_img, 32, 32)
|
44 |
|
45 |
input_img = np.array(input_img)
|
@@ -62,7 +62,14 @@ def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_numb
|
|
62 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
63 |
else:
|
64 |
visualization = None
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
68 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
@@ -73,12 +80,13 @@ demo = gr.Interface(
|
|
73 |
gr.Image(width=256, height=256, label="Input Image"),
|
74 |
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
75 |
gr.Checkbox(label="Show GradCAM"),
|
76 |
-
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
|
|
77 |
],
|
78 |
outputs = [
|
79 |
"text",
|
80 |
gr.Image(width=256, height=256, label="Output"),
|
81 |
-
gr.Label(
|
82 |
],
|
83 |
title = title,
|
84 |
description = description,
|
|
|
39 |
|
40 |
return resized
|
41 |
|
42 |
+
def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1, top_predictions=3):
|
43 |
input_img = resize_image_pil(input_img, 32, 32)
|
44 |
|
45 |
input_img = np.array(input_img)
|
|
|
62 |
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
|
63 |
else:
|
64 |
visualization = None
|
65 |
+
|
66 |
+
# Sort the confidences dictionary based on confidence values
|
67 |
+
sorted_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True))
|
68 |
+
|
69 |
+
# Pick the top n predictions
|
70 |
+
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
|
71 |
+
|
72 |
+
return classes[prediction[0].item()], visualization, top_n_confidences
|
73 |
|
74 |
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
|
75 |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
|
|
|
80 |
gr.Image(width=256, height=256, label="Input Image"),
|
81 |
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
|
82 |
gr.Checkbox(label="Show GradCAM"),
|
83 |
+
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
84 |
+
gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes")
|
85 |
],
|
86 |
outputs = [
|
87 |
"text",
|
88 |
gr.Image(width=256, height=256, label="Output"),
|
89 |
+
gr.Label(label="Top Classes")
|
90 |
],
|
91 |
title = title,
|
92 |
description = description,
|