AkashDataScience commited on
Commit
6373a51
·
1 Parent(s): 30b6d93

Added examples

Browse files
Files changed (9) hide show
  1. app.py +12 -3
  2. bird.jpg +0 -0
  3. car.jpg +0 -0
  4. deer.jpg +0 -0
  5. frog.jpg +0 -0
  6. horse.jpg +0 -0
  7. plane.jpg +0 -0
  8. ship.jpg +0 -0
  9. truck.jpg +0 -0
app.py CHANGED
@@ -39,7 +39,7 @@ def resize_image_pil(image, new_width, new_height):
39
 
40
  return resized
41
 
42
- def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_number = -1, top_predictions=3):
43
  input_img = resize_image_pil(input_img, 32, 32)
44
 
45
  input_img = np.array(input_img)
@@ -73,13 +73,22 @@ def inference(input_img, transparency = 0.5, is_grad_cam=True, target_layer_numb
73
 
74
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
75
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
76
- examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
 
 
 
 
 
 
 
 
 
77
  demo = gr.Interface(
78
  inference,
79
  inputs = [
80
  gr.Image(width=256, height=256, label="Input Image"),
81
- gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
82
  gr.Checkbox(label="Show GradCAM"),
 
83
  gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
84
  gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes")
85
  ],
 
39
 
40
  return resized
41
 
42
+ def inference(input_img, is_grad_cam=True, transparency = 0.5, target_layer_number = -1, top_predictions=3):
43
  input_img = resize_image_pil(input_img, 32, 32)
44
 
45
  input_img = np.array(input_img)
 
73
 
74
  title = "CIFAR10 trained on ResNet18 Model with GradCAM"
75
  description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
76
+ examples = [["cat.jpg", True, 0.5, -1, 3],
77
+ ["dog.jpg", True, 0.5, -1, 3],
78
+ ["bird.jpg", True, 0.5, -1, 3],
79
+ ["car.jpg", True, 0.5, -1, 3],
80
+ ["deer.jpg", True, 0.5, -1, 3],
81
+ ["frog.jpg", True, 0.5, -1, 3],
82
+ ["horse.jpg", True, 0.5, -1, 3],
83
+ ["plane.jpg", True, 0.5, -1, 3],
84
+ ["ship.jpg", True, 0.5, -1, 3],
85
+ ["truck.jpg", True, 0.5, -1, 3]]
86
  demo = gr.Interface(
87
  inference,
88
  inputs = [
89
  gr.Image(width=256, height=256, label="Input Image"),
 
90
  gr.Checkbox(label="Show GradCAM"),
91
+ gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
92
  gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
93
  gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes")
94
  ],
bird.jpg ADDED
car.jpg ADDED
deer.jpg ADDED
frog.jpg ADDED
horse.jpg ADDED
plane.jpg ADDED
ship.jpg ADDED
truck.jpg ADDED