File size: 2,578 Bytes
eb1ac6d
a2d9609
 
 
eb1ac6d
 
 
 
a2d9609
 
 
eb1ac6d
 
 
 
 
 
 
a2d9609
 
 
dc7c4f3
a2d9609
dc7c4f3
eb1ac6d
 
 
 
 
 
 
 
 
0f8ba6a
 
a2d9609
 
 
ea06666
a2d9609
0e04d08
2570fea
0bea06b
3b5d38c
 
 
 
6f9cae9
d1176bd
3b5d38c
 
2570fea
 
0bea06b
2570fea
 
 
 
 
 
 
 
 
 
a2d9609
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import easyocr
import gradio as gr
from PIL import Image
from llama_index.core import Settings
from llama_index.llms.gemini import Gemini
from llama_index.core import Document, VectorStoreIndex
from llama_index.embeddings.gemini import GeminiEmbedding

reader = easyocr.Reader(['en'])

llm = Gemini(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/gemini-2.0-flash")
gemini_embedding_model = GeminiEmbedding(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/embedding-001")

# Set Global settings
Settings.llm = llm
Settings.embed_model = gemini_embedding_model

def inference(img_path, width_ths):
    output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9,
                          height_ths=0.8, width_ths=width_ths, add_margin=0.2)
    
    output = "\n".join(output)
    
    # create a Document object from the extracted text
    doc = Document(text = output)

    # Create an index from the documents and save it to the disk.
    index = VectorStoreIndex.from_documents([doc])

    # save the index
    index.storage_context.persist(persist_dir = "./receiptsembeddings")
    
    return output

title = "Receipt RAG"
description = "A simple Gradio interface to query receipts using RAG"
examples = [["data/receipt_00000.JPG", 7.7],
            ["data/receipt_00001.jpg", 7.7]]

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"# {title}\n{description}")
    with gr.Row():
        with gr.Column():
            image = gr.Image(width=320, height=320, label="Input Receipt")
            width_ths = gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to merge bounding boxes")
            with gr.Row():
                clear_btn = gr.ClearButton(components=[image, width_ths])
                submit_btn = gr.Button("Submit", variant='primary')
        with gr.Column():
            ocr_out = gr.Textbox(label="OCR Output", type="text")

    submit_btn.click(inference, inputs=[image, width_ths], outputs=ocr_out)
    clear_btn.click(lambda: [None, 7.7], inputs=[image, width_ths])

    examples_obj = gr.Examples(examples=examples, inputs=[image, width_ths])

# demo = gr.Interface(inference, 
#                     inputs = [gr.Image(width=320, height=320, label="Input Receipt"), 
#                               gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to merge bounding boxes")],
#                     outputs= [gr.Textbox(label="OCR Output", type="text")],
#                     title=title,
#                     description=description,
#                     examples=examples)

demo.launch()