Spaces:
Sleeping
Sleeping
import os | |
import easyocr | |
import gradio as gr | |
from PIL import Image | |
from llama_index.core import Settings | |
from llama_index.llms.gemini import Gemini | |
from llama_index.core import Document, VectorStoreIndex | |
from llama_index.embeddings.gemini import GeminiEmbedding | |
reader = easyocr.Reader(['en']) | |
llm = Gemini(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/gemini-2.0-flash") | |
gemini_embedding_model = GeminiEmbedding(api_key=os.getenv('GEMINI_API_KEY'), model_name="models/embedding-001") | |
# Set Global settings | |
Settings.llm = llm | |
Settings.embed_model = gemini_embedding_model | |
def inference(img_path, width_ths): | |
output = reader.readtext(img_path, detail=0, slope_ths=0.7, ycenter_ths=0.9, | |
height_ths=0.8, width_ths=width_ths, add_margin=0.2) | |
output = "\n".join(output) | |
# create a Document object from the extracted text | |
doc = Document(text = output) | |
# Create an index from the documents and save it to the disk. | |
index = VectorStoreIndex.from_documents([doc]) | |
# save the index | |
index.storage_context.persist(persist_dir = "./receiptsembeddings") | |
return output | |
title = "Receipt RAG" | |
description = "A simple Gradio interface to query receipts using RAG" | |
examples = [["data/receipt_00000.JPG", 7.7], | |
["data/receipt_00001.jpg", 7.7]] | |
demo = gr.Interface(inference, | |
inputs = [gr.Image(width=320, height=320, label="Input Receipt"), | |
gr.Slider(0, 10, 7.7, 0.1, label="Width Threshold to merge bounding boxes")], | |
outputs= [gr.Textbox(label="OCR Output", type="text")], | |
title=title, | |
description=description, | |
examples=examples) | |
demo.launch() | |