AkashDataScience's picture
Updated examples
66578f6
import os
import torch
import gradio as gr
from tqdm import tqdm
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
style_token_dict = {'Concept':'<concept-art>', 'Realistic':'<doose-realistic>', 'Line':'<line-art>',
'Ricky':'<RickyArt>', 'Plane Scape':'<tony-diterlizzi-planescape>'}
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
concept_art_embed = torch.load('concept-art.bin')
doose_s_realistic_art_style_embed = torch.load('doose-s-realistic-art-style.bin')
line_art_embed = torch.load('line-art.bin')
rickyart_embed = torch.load('rickyart.bin')
tony_diterlizzi_s_planescape_art_embed = torch.load('tony-diterlizzi-s-planescape-art.bin')
tokenizer.add_tokens(['<concept-art>', '<doose-realistic>', '<line-art>', '<RickyArt>', '<tony-diterlizzi-planescape>'])
token_emb_layer_with_art = torch.nn.Embedding(49413, 768)
token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.state_dict()['weight'],
concept_art_embed['<concept-art>'].unsqueeze(0).to(torch_device),
doose_s_realistic_art_style_embed['<doose-realistic>'].unsqueeze(0).to(torch_device),
line_art_embed['<line-art>'].unsqueeze(0).to(torch_device),
rickyart_embed['<RickyArt>'].unsqueeze(0).to(torch_device),
tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)
grayscale_transformer = tfms.Grayscale(num_output_channels=3)
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
def pil_to_latent(input_im):
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def build_causal_attention_mask(bsz, seq_len, dtype):
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min)) # fill with large negative number (acts like -inf)
mask = mask.triu_(1) # zero out the lower diagonal to enforce causality
return mask.unsqueeze(1) # add a batch dimension
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, text_embeddings):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def guide_loss(images, loss_type='Gayscale'):
# grayscale loss
if loss_type == 'Grayscale':
transformed_imgs = grayscale_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
# brightness loss
elif loss_type == 'Bright':
transformed_imgs = tfms.functional.adjust_brightness(images, brightness_factor=3)
error = torch.abs(transformed_imgs - images).mean()
# contrast loss
elif loss_type == 'Contrast':
transformed_imgs = tfms.functional.adjust_contrast(images, contrast_factor=10)
error = torch.abs(transformed_imgs - images).mean()
# symmetry loss - Flip the image along the width
elif loss_type == "Symmetry":
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
# saturation loss
elif loss_type == 'Saturation':
transformed_imgs = tfms.functional.adjust_saturation(images,saturation_factor = 10)
error = torch.abs(transformed_imgs - images).mean()
return error
def generate_with_guide_loss(num_inference_steps, guidance_scale, seed, text_input, text_embeddings, loss_type, loss_scale):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = guide_loss(denoised_images, loss_type) * loss_scale
# Occasionally print it out
if i%5==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
prompt = text + " the style of " + style_token_dict[style]
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer_with_art(input_ids)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
image_embs = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)
# Generate an image with guidance
image_guide = generate_with_guide_loss(inference_step, guidance_scale, seed, text_input,
modified_output_embeddings, guidance_method, loss_scale)
return image_embs, image_guide
title = "Stable Diffusion with Textual Inversion"
description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
examples = [["A sweet potato farm", 'Concept', 10, 4.5, 1, 'Grayscale', 100],
["Sky full of cotton candy", 'Realistic', 10, 9.5, 2, 'Bright', 200]]
demo = gr.Interface(inference,
inputs = [gr.Textbox(label="Prompt", type="text"),
gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line',
'Ricky', 'Plane Scape'], value="Concept"),
gr.Slider(10, 30, 10, step = 1, label="Inference steps"),
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
gr.Slider(0, 10000, 1, step = 1, label="Seed"),
gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast',
'Symmetry', 'Saturation'], value="Grayscale"),
gr.Slider(100, 10000, 200, step = 100, label="Loss scale")],
outputs= [gr.Image(width=320, height=320, label="Generated art"),
gr.Image(width=320, height=320, label="Generated art with guidance")],
title=title,
description=description,
examples=examples)
demo.launch()