File size: 13,666 Bytes
7f3baaa
 
 
 
 
a67c790
7f3baaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67c790
 
7f3baaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1e9f5
a67c790
0c1e9f5
a67c790
 
 
 
0c1e9f5
a67c790
 
 
 
0c1e9f5
a67c790
 
 
 
0c1e9f5
a67c790
 
 
 
0c1e9f5
a67c790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4724ce5
a67c790
 
 
 
 
 
 
 
 
 
 
 
 
 
b36e2f1
a67c790
 
 
 
 
 
 
 
 
 
 
 
 
 
7f3baaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a67c790
 
 
 
 
7f3baaa
a67c790
7f3baaa
 
 
66578f6
 
7f3baaa
 
 
 
 
4724ce5
7f3baaa
a67c790
 
0c1e9f5
b36e2f1
a67c790
 
7f3baaa
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import torch
import gradio as gr
from tqdm import tqdm
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel

torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

style_token_dict = {'Concept':'<concept-art>', 'Realistic':'<doose-realistic>', 'Line':'<line-art>',
                    'Ricky':'<RickyArt>', 'Plane Scape':'<tony-diterlizzi-planescape>'}

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)

token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)

concept_art_embed = torch.load('concept-art.bin')
doose_s_realistic_art_style_embed = torch.load('doose-s-realistic-art-style.bin')
line_art_embed = torch.load('line-art.bin')
rickyart_embed = torch.load('rickyart.bin')
tony_diterlizzi_s_planescape_art_embed = torch.load('tony-diterlizzi-s-planescape-art.bin')

tokenizer.add_tokens(['<concept-art>', '<doose-realistic>', '<line-art>', '<RickyArt>', '<tony-diterlizzi-planescape>'])

token_emb_layer_with_art = torch.nn.Embedding(49413, 768)
token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.state_dict()['weight'],
                                              concept_art_embed['<concept-art>'].unsqueeze(0).to(torch_device),
                                              doose_s_realistic_art_style_embed['<doose-realistic>'].unsqueeze(0).to(torch_device),
                                              line_art_embed['<line-art>'].unsqueeze(0).to(torch_device),
                                              rickyart_embed['<RickyArt>'].unsqueeze(0).to(torch_device),
                                              tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)

grayscale_transformer = tfms.Grayscale(num_output_channels=3)

def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32)

def pil_to_latent(input_im):
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
    return 0.18215 * latent.latent_dist.sample()

def latents_to_pil(latents):
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

def build_causal_attention_mask(bsz, seq_len, dtype):
    mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
    mask.fill_(torch.tensor(torch.finfo(dtype).min))  # fill with large negative number (acts like -inf)
    mask = mask.triu_(1)  # zero out the lower diagonal to enforce causality
    return mask.unsqueeze(1)  # add a batch dimension

def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None, # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(torch_device),
        output_attentions=None,
        output_hidden_states=True, # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready!
    return output

def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, text_embeddings):
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    generator = torch.manual_seed(seed)   # Seed generator to create the inital latent noise
    batch_size = 1

    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
      [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]

def guide_loss(images, loss_type='Gayscale'):
    # grayscale loss
    if loss_type == 'Grayscale':
      transformed_imgs = grayscale_transformer(images)
      error = torch.abs(transformed_imgs - images).mean()

    # brightness loss
    elif loss_type == 'Bright':
      transformed_imgs = tfms.functional.adjust_brightness(images, brightness_factor=3)
      error = torch.abs(transformed_imgs - images).mean()

    # contrast loss
    elif loss_type == 'Contrast':
      transformed_imgs = tfms.functional.adjust_contrast(images, contrast_factor=10)
      error = torch.abs(transformed_imgs - images).mean()

    # symmetry loss - Flip the image along the width
    elif loss_type == "Symmetry":
      flipped_image = torch.flip(images, [3])
      error = F.mse_loss(images, flipped_image)

    # saturation loss
    elif loss_type == 'Saturation':
      transformed_imgs = tfms.functional.adjust_saturation(images,saturation_factor = 10)
      error = torch.abs(transformed_imgs - images).mean()

    return error

def generate_with_guide_loss(num_inference_steps, guidance_scale, seed, text_input, text_embeddings, loss_type, loss_scale):
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    generator = torch.manual_seed(seed)   # Seed generator to create the inital latent noise
    batch_size = 1

    # And the uncond. input as before:
    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform CFG
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if i%5 == 0:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            latents_x0 = latents - sigma * noise_pred
            # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

            # Decode to image space
            denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

            # Calculate loss
            loss = guide_loss(denoised_images, loss_type) * loss_scale

            # Occasionally print it out
            if i%5==0:
                print(i, 'loss:', loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            latents = latents.detach() - cond_grad * sigma**2

        # Now step with scheduler
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]

def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
    prompt = text + " the style of " + style_token_dict[style]

    # Tokenize
    text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    input_ids = text_input.input_ids.to(torch_device)

    # Get token embeddings
    token_embeddings = token_emb_layer_with_art(input_ids)

    # Combine with pos embs
    input_embeddings = token_embeddings + position_embeddings

    #  Feed through to get final output embs
    modified_output_embeddings = get_output_embeds(input_embeddings)

    # And generate an image with this:
    image_embs = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)

    # Generate an image with guidance
    image_guide = generate_with_guide_loss(inference_step, guidance_scale, seed, text_input,
                                           modified_output_embeddings, guidance_method, loss_scale)

    return image_embs, image_guide

title = "Stable Diffusion with Textual Inversion"
description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
examples = [["A sweet potato farm", 'Concept', 10, 4.5, 1, 'Grayscale', 100],
            ["Sky full of cotton candy", 'Realistic', 10, 9.5, 2, 'Bright', 200]]

demo = gr.Interface(inference, 
                    inputs = [gr.Textbox(label="Prompt", type="text"),
                              gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line', 
                                                                  'Ricky', 'Plane Scape'], value="Concept"), 
                              gr.Slider(10, 30, 10, step = 1, label="Inference steps"),
                              gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
                              gr.Slider(0, 10000, 1, step = 1, label="Seed"),
                              gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 
                                                                  'Symmetry', 'Saturation'], value="Grayscale"),
                              gr.Slider(100, 10000, 200, step = 100, label="Loss scale")],
                    outputs= [gr.Image(width=320, height=320, label="Generated art"),
                              gr.Image(width=320, height=320, label="Generated art with guidance")],
                    title=title,
                    description=description,
                    examples=examples)

demo.launch()