Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
n_embd = 384 | |
block_size = 256 | |
dropout = 0.1 | |
n_head = 8 | |
n_layer = 6 | |
# read text file | |
with open('input.txt', 'r', encoding='utf-8') as f: | |
text = f.read() | |
# collect all the unique characters that occur in this text | |
chars = sorted(list(set(text))) | |
vocab_size = len(chars) | |
cuda = torch.cuda.is_available() | |
device = 'cuda' if cuda else 'cpu' | |
class Head(nn.Module): | |
""" one head of self-attention""" | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(n_embd, head_size, bias=False) | |
self.query = nn.Linear(n_embd, head_size, bias=False) | |
self.value = nn.Linear(n_embd, head_size, bias=False) | |
self.register_buffer('trill', torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B,T,C = x.shape | |
k = self.key(x) | |
q = self.query(x) | |
# compute attention scores ("affinities") | |
wei = q @ k.transpose(-2, -1) * C**-0.5 | |
wei = wei.masked_fill(self.trill[:T, :T] == 0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
# perform the weighted aggregation of the values | |
v = self.value(x) | |
out = wei @ v | |
return out | |
class MultiHeadAttention(nn.Module): | |
""" multiple heads of self-attention in parallel """ | |
def __init__(self, num_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
self.proj = nn.Linear(n_embd, n_embd) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.dropout(self.proj(out)) | |
return out | |
class FeedForward(nn.Module): | |
""" a simple linear layer followed by a non-linearity """ | |
def __init__(self, n_embd): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, 4 * n_embd), | |
nn.ReLU(), | |
nn.Linear(4 * n_embd, n_embd), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
""" Transformer block: communication followed by computation""" | |
def __init__(self, n_embd, n_head) -> None: | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size) | |
self.ffwd = FeedForward(n_embd) | |
self.ln1 = nn.LayerNorm(n_embd) | |
self.ln2 = nn.LayerNorm(n_embd) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return (x) | |
class BigramLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# each token directly reads off the logits for the next token from a lookup table | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
# self.sa_head = MultiHeadAttention(4, n_embd//4) | |
# self.ffwd = FeedForward(n_embd) | |
# self.blocks = nn.Sequential( | |
# Block(n_embd, n_head=4), | |
# Block(n_embd, n_head=4), | |
# Block(n_embd, n_head=4), | |
# nn.LayerNorm(n_embd) | |
# ) | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head) for _ in range (n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embd) | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
# idx and targets are both (B,T) tensor of integers | |
tok_emb = self.token_embedding_table(idx) # (B,T,C) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) | |
x = tok_emb + pos_emb | |
# x = self.sa_head(x) | |
# x = self.ffwd(x) | |
x = self.blocks(x) | |
x = self.ln_f(x) | |
logits = self.lm_head(x) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B*T, C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens): | |
# idx is (B, T) array of indices in the current context | |
for _ in range(max_new_tokens): | |
idx_cond = idx[:, -block_size:] | |
# get the predictions | |
logits, loss = self(idx_cond) | |
# focus only on the last time step | |
logits = logits[:, -1, :] # becomes (B, C) | |
# apply softmax to get probabilities | |
probs = F.softmax(logits, dim=-1) # (B, C) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
# append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
return idx | |