nomic / app_hf.py
AkinyemiAra's picture
Upload 9 files
72cd7d2 verified
raw
history blame
7.55 kB
import gradio as gr
import torch
import numpy as np
from PIL import Image
import os
import json
import base64
from io import BytesIO
import requests
from typing import Dict, List, Any, Optional
from transformers.pipelines import pipeline
# MCP imports
from modelcontextprotocol.server import Server
from modelcontextprotocol.server.gradio import GradioServerTransport
from modelcontextprotocol.types import (
CallToolRequestSchema,
ErrorCode,
ListToolsRequestSchema,
McpError,
)
# Initialize the model
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
# Function to generate embeddings from an image
def generate_embedding(image):
if image is None:
return None
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
try:
# Generate embedding using the transformers pipeline
result = model(image)
# Process the result based on its type
embedding_list = None
# Handle different possible output types
if isinstance(result, torch.Tensor):
embedding_list = result.detach().cpu().numpy().flatten().tolist()
elif isinstance(result, np.ndarray):
embedding_list = result.flatten().tolist()
elif isinstance(result, list):
# If it's a list of tensors or arrays
if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
else:
embedding_list = result
else:
# Try to convert to a list as a last resort
try:
if result is not None:
embedding_list = list(result)
else:
print("Result is None")
return None
except:
print(f"Couldn't convert result of type {type(result)} to list")
return None
# Ensure we have a valid embedding list
if embedding_list is None:
return None
# Calculate embedding dimension
embedding_dim = len(embedding_list)
return {
"embedding": embedding_list,
"dimension": embedding_dim
}
except Exception as e:
print(f"Error generating embedding: {str(e)}")
return None
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)")
gr.Markdown("Upload an image to generate embeddings using the Nomic Vision model.")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
embed_btn = gr.Button("Generate Embedding")
with gr.Column():
embedding_json = gr.JSON(label="Embedding Output")
embedding_dim = gr.Textbox(label="Embedding Dimension")
def update_embedding(img):
result = generate_embedding(img)
if result is None:
return {
embedding_json: None,
embedding_dim: "No embedding generated"
}
return {
embedding_json: result,
embedding_dim: f"Dimension: {len(result['embedding'])}"
}
embed_btn.click(
fn=update_embedding,
inputs=[input_image],
outputs=[embedding_json, embedding_dim]
)
# MCP Server Implementation
class NomicEmbeddingServer:
def __init__(self):
self.server = Server(
{
"name": "nomic-embedding-server",
"version": "0.1.0",
},
{
"capabilities": {
"tools": {},
},
}
)
self.setup_tool_handlers()
# Error handling
self.server.onerror = lambda error: print(f"[MCP Error] {error}")
def setup_tool_handlers(self):
self.server.set_request_handler(ListToolsRequestSchema, self.handle_list_tools)
self.server.set_request_handler(CallToolRequestSchema, self.handle_call_tool)
async def handle_list_tools(self, request):
return {
"tools": [
{
"name": "embed_image",
"description": "Generate embeddings for an image using nomic-ai/nomic-embed-vision-v1.5",
"inputSchema": {
"type": "object",
"properties": {
"image_url": {
"type": "string",
"description": "URL of the image to embed",
},
"image_data": {
"type": "string",
"description": "Base64-encoded image data (alternative to image_url)",
},
},
"anyOf": [
{"required": ["image_url"]},
{"required": ["image_data"]},
],
},
}
]
}
async def handle_call_tool(self, request):
if request.params.name != "embed_image":
raise McpError(
ErrorCode.MethodNotFound,
f"Unknown tool: {request.params.name}"
)
args = request.params.arguments
try:
# Handle image from URL
if "image_url" in args:
response = requests.get(args["image_url"])
image = Image.open(BytesIO(response.content))
# Handle image from base64 data
elif "image_data" in args:
image_data = base64.b64decode(args["image_data"])
image = Image.open(BytesIO(image_data))
else:
raise McpError(
ErrorCode.InvalidParams,
"Either image_url or image_data must be provided"
)
# Generate embedding
result = generate_embedding(image)
return {
"content": [
{
"type": "text",
"text": json.dumps(result, indent=2),
}
]
}
except Exception as e:
return {
"content": [
{
"type": "text",
"text": f"Error generating embedding: {str(e)}",
}
],
"isError": True,
}
# Initialize and run the MCP server
embedding_server = NomicEmbeddingServer()
# Connect the MCP server to the Gradio app
transport = GradioServerTransport(demo)
embedding_server.server.connect(transport)
# Launch the Gradio app
if __name__ == "__main__":
# For Huggingface Spaces, we need to specify the server name and port
demo.launch(server_name="0.0.0.0", server_port=7860)