NINU / app.py
Ali-Developments's picture
Update app.py
1d1bae6 verified
""" Basic Agent Evaluation Runner """
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from agent import ninu
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
"""Agent class using LangGraph compiled graph."""
def __init__(self):
print("BasicAgent initialized.")
self.graph = ninu # ما تنساش: ما تعملش () هنا لأن `ninu` هو كائن compiled
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": messages})
for message in reversed(result["messages"]):
if isinstance(message.content, str) and "FINAL ANSWER:" in message.content:
return message.content.split("FINAL ANSWER:")[-1].strip()
return "لم أتمكن من إيجاد إجابة نهائية."
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and customize the agent logic.
2. Log in with Hugging Face to enable submission.
3. Click the button to run evaluation and submit all answers.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\nLaunching Gradio Interface...")
demo.launch(debug=True, share=False)