Spaces:
Runtime error
Runtime error
""" Basic Agent Evaluation Runner """ | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from langchain_core.messages import HumanMessage | |
from agent import ninu | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class BasicAgent: | |
"""Agent class using LangGraph compiled graph.""" | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.graph = ninu # ما تنساش: ما تعملش () هنا لأن `ninu` هو كائن compiled | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
messages = [HumanMessage(content=question)] | |
result = self.graph.invoke({"messages": messages}) | |
for message in reversed(result["messages"]): | |
if isinstance(message.content, str) and "FINAL ANSWER:" in message.content: | |
return message.content.split("FINAL ANSWER:")[-1].strip() | |
return "لم أتمكن من إيجاد إجابة نهائية." | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Clone this space and customize the agent logic. | |
2. Log in with Hugging Face to enable submission. | |
3. Click the button to run evaluation and submit all answers. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\nLaunching Gradio Interface...") | |
demo.launch(debug=True, share=False) | |