pixera / app.py
Alican Akca
For Version 2
662dec3
raw
history blame
2.93 kB
import cv2
import torch
import numpy as np
import gradio as gr
import paddlehub as hub
from PIL import Image
from methods.img2pixl import pixL
from examples.pixelArt.combine import combine
model = hub.Module(name='U2Net')
device = "cuda" if torch.cuda.is_available() else "cpu"
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()
def GIF(fname,pixel_size):
gif = Image.open(fname)
frames = []
for i in range(gif.n_frames): #First Step: Splitting the GIF into frames
gif.seek(i)
frame = Image.new('RGB', gif.size)
frame.paste(gif)
frame = np.array(frame)
frames.append(frame)
result = pixL().toThePixL(frames, pixel_size)
for frame in result: #Second Step: Adding Cartoon Effect to each frame
frame = Image.fromarray(frame)
frame = cv2.cvtColor(np.asarray(face2paint(model, frame)), cv2.COLOR_BGR2RGB)
frames = []
<<<<<<< HEAD
for frame in result: #Third Step: Combining the frames into a GIF
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
cache = Image.open('cache.gif')
return cache
=======
for frame in result:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
print(type(frames), len(frames), type(frames[0]), frames[0].size)
frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
return Image.open('cache.gif')
>>>>>>> a2e31df8118400de0782a9feb55255620b93cd83
def initilize(image,pixel_size,checkbox1):
if image.name.endswith('.gif'):
GIF(image.name,pixel_size)
else:
image = Image.open(image.name).convert("RGB")
image = cv2.cvtColor(np.asarray(face2paint(model, image)), cv2.COLOR_BGR2RGB)
if checkbox1:
result = model.Segmentation(
images=[image],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
result = combine.combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']],
pixel_size),
background_image = image)
else:
result = pixL().toThePixL([image], pixel_size)
return Image.fromarray(result)
inputs = ["file",
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"),
gr.Checkbox(label="Object-Oriented Inference", value=False)]
outputs = [gr.Image(type="pil",label="Front")]
gr.Interface(fn = initilize,
inputs = inputs,
outputs = outputs).launch()