Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
def load_model(): | |
model_name = "Alijeff1214/DeutscheLexAI_BGB_2.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return tokenizer, model | |
tokenizer, model = load_model() | |
st.title("DeutscheLexAI_BGB Chat Interface") | |
st.write("Interact with the fine-tuned Qwen2.5-3B model for German legal texts!") | |
user_input = st.text_input("Enter your question or prompt:") | |
if st.button("Generate Response") and user_input: | |
# Tokenize and generate response (adjust parameters as needed) | |
inputs = tokenizer(user_input, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=500, do_sample=True, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.text_area("Model Response:", value=response, height=300) | |