Spaces:
Running
Running
# Adjiman function benchmark | |
import numpy as np | |
from scipy.optimize import minimize | |
from .Base import BaseBenchmark | |
class Adjiman(BaseBenchmark): | |
"""Adjiman's function benchmark.""" | |
def __init__(self): | |
super().__init__() | |
self.name = "Adjiman" | |
self.dimensions = 2 | |
self.global_minimum = [0, 0] | |
self.global_minimum_value = 0.5 | |
def evaluate(x): | |
"""Evaluate Adjiman's function.""" | |
x1, x2 = x | |
term1 = (x1**2 + x2**2)**0.5 | |
term2 = np.sin(term1) | |
term3 = np.exp(-term1) | |
return 0.5 * (term1 + term2 + term3) | |
def adjiman(x): | |
"""Adjiman's function.""" | |
x1, x2 = x | |
term1 = (x1**2 + x2**2)**0.5 | |
term2 = np.sin(term1) | |
term3 = np.exp(-term1) | |
return 0.5 * (term1 + term2 + term3) | |
def benchmark_adjiman(): | |
"""Benchmark the Adjiman function.""" | |
x0 = np.random.uniform(-5, 5, size=2) | |
result = minimize(adjiman, x0, method='BFGS') | |
print(f"Optimized parameters: {result.x}") | |
print(f"Function value at optimum: {result.fun}") | |
print("Optimization successful:", result.success) | |
if __name__ == "__main__": | |
benchmark_adjiman() |