Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -53,17 +53,31 @@ LLM_MODEL_EVALS = {
|
|
53 |
},
|
54 |
}
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
sorted_items = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
59 |
models, scores = zip(*sorted_items)
|
|
|
60 |
|
61 |
fig = go.Figure()
|
62 |
fig.add_trace(go.Bar(
|
63 |
x=scores,
|
64 |
y=models,
|
65 |
orientation='h',
|
66 |
-
marker_color=
|
67 |
))
|
68 |
|
69 |
fig.update_layout(
|
@@ -74,6 +88,36 @@ def plot_horizontal_bar(domain, data, color):
|
|
74 |
template="plotly_white",
|
75 |
height=500,
|
76 |
margin=dict(l=120, r=20, t=40, b=40),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
)
|
78 |
return fig
|
79 |
|
@@ -81,22 +125,27 @@ def plot_horizontal_bar(domain, data, color):
|
|
81 |
def display_tabular_eval(domain):
|
82 |
if domain not in TABULAR_MODEL_EVALS:
|
83 |
return None, "Invalid domain selected"
|
84 |
-
plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], 'indigo')
|
85 |
details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
|
86 |
return plot, details
|
87 |
|
88 |
def display_llm_eval(domain):
|
89 |
if domain not in LLM_MODEL_EVALS:
|
90 |
return None, "Invalid domain selected"
|
91 |
-
plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], 'lightblue')
|
92 |
details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
|
93 |
return plot, details
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
gr.Markdown("""
|
98 |
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
99 |
-
A comprehensive benchmarking suite comparing Nexa models against state-of-the-art models
|
100 |
""")
|
101 |
|
102 |
with gr.Tabs():
|
@@ -132,13 +181,30 @@ with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f
|
|
132 |
outputs=[llm_plot, llm_details]
|
133 |
)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
gr.Markdown("""
|
136 |
---
|
137 |
### ℹ️ About
|
138 |
-
Nexa Evals provides benchmarks for
|
139 |
-
- **Tabular Models**: Evaluated on domain-specific metrics
|
140 |
-
- **
|
141 |
-
|
|
|
142 |
""")
|
143 |
|
144 |
demo.launch()
|
|
|
53 |
},
|
54 |
}
|
55 |
|
56 |
+
# Data for Nexa Mistral Sci-7B Evaluation (based on the provided image)
|
57 |
+
NEXA_MISTRAL_EVALS = {
|
58 |
+
"Nexa Mistral Sci-7B": {
|
59 |
+
"Scientific Utility": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.5},
|
60 |
+
"Symbolism & Math Logic": {"OSIR (General)": 6.0, "OSIR-Field (Physics)": 7.5},
|
61 |
+
"Citation & Structure": {"OSIR (General)": 5.5, "OSIR-Field (Physics)": 6.0},
|
62 |
+
"Thematic Grounding": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.0},
|
63 |
+
"Hypothesis Framing": {"OSIR (General)": 6.0, "OSIR-Field (Physics)": 7.0},
|
64 |
+
"Internal Consistency": {"OSIR (General)": 9.0, "OSIR-Field (Physics)": 9.5},
|
65 |
+
"Entropy / Novelty": {"OSIR (General)": 6.5, "OSIR-Field (Physics)": 6.0},
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
# Universal plotting function with highlighted Nexa models
|
70 |
+
def plot_horizontal_bar(domain, data, highlight_keyword="Nexa", highlight_color='indigo', default_color='lightgray'):
|
71 |
sorted_items = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
72 |
models, scores = zip(*sorted_items)
|
73 |
+
colors = [highlight_color if highlight_keyword in model else default_color for model in models]
|
74 |
|
75 |
fig = go.Figure()
|
76 |
fig.add_trace(go.Bar(
|
77 |
x=scores,
|
78 |
y=models,
|
79 |
orientation='h',
|
80 |
+
marker_color=colors,
|
81 |
))
|
82 |
|
83 |
fig.update_layout(
|
|
|
88 |
template="plotly_white",
|
89 |
height=500,
|
90 |
margin=dict(l=120, r=20, t=40, b=40),
|
91 |
+
yaxis=dict(automargin=True),
|
92 |
+
)
|
93 |
+
return fig
|
94 |
+
|
95 |
+
# Plotting function for Nexa Mistral Sci-7B Evaluation
|
96 |
+
def plot_mistral_eval(metric):
|
97 |
+
if metric not in NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"]:
|
98 |
+
return None, "Invalid metric selected"
|
99 |
+
data = NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric]
|
100 |
+
models = list(data.keys())
|
101 |
+
scores = list(data.values())
|
102 |
+
|
103 |
+
fig = go.Figure()
|
104 |
+
fig.add_trace(go.Bar(
|
105 |
+
x=scores,
|
106 |
+
y=models,
|
107 |
+
orientation='h',
|
108 |
+
marker_color=['yellow', 'orange'] # Matching the provided image colors
|
109 |
+
))
|
110 |
+
|
111 |
+
fig.update_layout(
|
112 |
+
title=f"Nexa Mistral Sci-7B Evaluation: {metric}",
|
113 |
+
xaxis_title="Score (1-10)",
|
114 |
+
yaxis_title="Model",
|
115 |
+
xaxis_range=[0, 10],
|
116 |
+
template="plotly_white",
|
117 |
+
height=400,
|
118 |
+
margin=dict(l=120, r=20, t=40, b=40),
|
119 |
+
yaxis=dict(automargin=True),
|
120 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
121 |
)
|
122 |
return fig
|
123 |
|
|
|
125 |
def display_tabular_eval(domain):
|
126 |
if domain not in TABULAR_MODEL_EVALS:
|
127 |
return None, "Invalid domain selected"
|
128 |
+
plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], highlight_color='indigo', default_color='lightgray')
|
129 |
details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
|
130 |
return plot, details
|
131 |
|
132 |
def display_llm_eval(domain):
|
133 |
if domain not in LLM_MODEL_EVALS:
|
134 |
return None, "Invalid domain selected"
|
135 |
+
plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], highlight_color='lightblue', default_color='gray')
|
136 |
details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
|
137 |
return plot, details
|
138 |
|
139 |
+
def display_mistral_eval(metric):
|
140 |
+
plot = plot_mistral_eval(metric)
|
141 |
+
details = json.dumps(NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric], indent=2)
|
142 |
+
return plot, details
|
143 |
+
|
144 |
+
# Gradio interface with improved styling
|
145 |
+
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f0f0f0; color: #333;}") as demo:
|
146 |
gr.Markdown("""
|
147 |
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
148 |
+
A comprehensive benchmarking suite comparing Nexa models against state-of-the-art models.
|
149 |
""")
|
150 |
|
151 |
with gr.Tabs():
|
|
|
181 |
outputs=[llm_plot, llm_details]
|
182 |
)
|
183 |
|
184 |
+
with gr.TabItem("Nexa Mistral Sci-7B"):
|
185 |
+
with gr.Row():
|
186 |
+
mistral_metric = gr.Dropdown(
|
187 |
+
choices=list(NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"].keys()),
|
188 |
+
label="Select Metric",
|
189 |
+
value="Scientific Utility"
|
190 |
+
)
|
191 |
+
show_mistral_btn = gr.Button("Show Evaluation")
|
192 |
+
mistral_plot = gr.Plot(label="Benchmark Plot")
|
193 |
+
mistral_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
194 |
+
show_mistral_btn.click(
|
195 |
+
fn=display_mistral_eval,
|
196 |
+
inputs=mistral_metric,
|
197 |
+
outputs=[mistral_plot, mistral_details]
|
198 |
+
)
|
199 |
+
|
200 |
gr.Markdown("""
|
201 |
---
|
202 |
### ℹ️ About
|
203 |
+
Nexa Evals provides benchmarks for tabular models, language models, and specific evaluations like Nexa Mistral Sci-7B:
|
204 |
+
- **Tabular Models**: Evaluated on domain-specific metrics across fields like Proteins and Astro.
|
205 |
+
- **LLMs**: Assessed using the SciEval benchmark under the OSIR initiative.
|
206 |
+
- **Nexa Mistral Sci-7B**: Compares general (OSIR) and physics-specific (OSIR-Field) performance across multiple metrics.
|
207 |
+
Scores are normalized where applicable (0-1 for tabular/LLMs, 1-10 for Mistral).
|
208 |
""")
|
209 |
|
210 |
demo.launch()
|