MATRIX / app.py
laserbeam2045
fix
32dbfef
raw
history blame
1.55 kB
import os
import torch
from fastapi import FastAPI
from transformers import AutoProcessor, AutoModelForCausalLM
from pydantic import BaseModel
import logging
# ログ設定
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# モデルロード
model_name = "google/gemma-3-4b-it" # 軽量な2Bモデルに変更
try:
logger.info(f"Loading model: {model_name}")
processor = AutoProcessor.from_pretrained(model_name, token=os.getenv("HF_TOKEN"))
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.getenv("HF_TOKEN"),
low_cpu_mem_usage=True,
load_in_4bit=True # 量子化でメモリ節約
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model load error: {e}")
raise
class TextInput(BaseModel):
text: str
max_length: int = 50
@app.post("/generate")
async def generate_text(input: TextInput):
try:
logger.info(f"Generating text for input: {input.text}")
inputs = processor(input.text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs, max_length=input.max_length)
result = processor.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Generated text: {result}")
return {"generated_text": result}
except Exception as e:
logger.error(f"Generation error: {e}")
return {"error": str(e)}