Vistiq / app.py
Alwin122's picture
Update app.py
b659d00 verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image, ImageEnhance, ImageFilter
import torch.nn as nn
import torch
import cv2
import numpy as np
import os
import requests
import io
from datetime import datetime
from scipy import ndimage
import json
import tempfile
import shutil
from typing import List, Dict, Optional
import uuid
import asyncio
from concurrent.futures import ThreadPoolExecutor
import logging
import cloudinary
import cloudinary.uploader
from cloudinary.utils import cloudinary_url
import os
from dotenv import load_dotenv
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="Fashion Segmentation API", version="1.0.0")
# Request/Response models
class SegmentationRequest(BaseModel):
image_url: HttpUrl
settings: Optional[Dict] = {
"padding": 15,
"background": "white",
"quality": "high",
"outline": "grey_2px"
}
image_url="https://res.cloudinary.com/dyvuvklpk/image/upload/v1751009512/MEN-Denim-id_00000089-46_7_additional_ow2h0l.png"
#print(hi)
class SegmentInfo(BaseModel):
class_id: int
class_name: str
filename: str
category: str
pixel_count: int
coverage_percent: float
cloudinary_url: str
public_id: str
class SegmentationResponse(BaseModel):
success: bool
processing_time: float
total_segments: int
segments: List[SegmentInfo]
metadata: Dict
# Global model storage
model_cache = {}
executor = ThreadPoolExecutor(max_workers=4)
# Constants
SEGFORMER_LABELS = {
0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes",
5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe",
11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm",
16: "Bag", 17: "Scarf"
}
CLOTHING_ITEMS = {4, 5, 6, 7, 8, 17} # Upper-clothes, Skirt, Pants, Dress, Belt, Scarf
ACCESSORIES = {1, 3, 9, 10, 16} # Hat, Sunglasses, Left-shoe, Right-shoe, Bag
BODY_PARTS = {2, 11, 12, 13, 14, 15} # Hair, Face, Left-leg, Right-leg, Left-arm, Right-arm
load_dotenv()
# Cloudinary Configuration
cloudinary.config(
cloud_name=os.getenv("CLOUDINARY_CLOUD_NAME"),
api_key=os.getenv("CLOUDINARY_API_KEY"),
api_secret=os.getenv("CLOUDINARY_API_SECRET"),
secure=True
)
async def load_model():
"""Load the segmentation model asynchronously"""
if "model" not in model_cache:
logger.info("Loading SegFormer model...")
try:
processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
model_cache["processor"] = processor
model_cache["model"] = model
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Model loading failed: {e}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {e}")
return model_cache["processor"], model_cache["model"]
def download_image(url: str) -> Image.Image:
"""Download image from URL"""
try:
response = requests.get(str(url), timeout=30)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content))
if image.mode != 'RGB':
image = image.convert('RGB')
logger.info("Image downloaaded succcessfully:",url)
return image
except Exception as e:
raise HTTPException(status_code=400, detail=f"Failed to download image: {e}")
def enhance_image_quality(image):
"""Enhance image quality for high-quality output"""
if isinstance(image, np.ndarray):
if len(image.shape) == 3 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
else:
pil_image = image
# High quality enhancement
pil_image = pil_image.filter(ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3))
enhancer = ImageEnhance.Sharpness(pil_image)
pil_image = enhancer.enhance(1.3)
enhancer = ImageEnhance.Contrast(pil_image)
pil_image = enhancer.enhance(1.15)
enhancer = ImageEnhance.Color(pil_image)
pil_image = enhancer.enhance(1.1)
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
def get_category_folder(class_id):
"""Get appropriate folder for class"""
if class_id in CLOTHING_ITEMS:
return "clothing"
"""elif class_id in ACCESSORIES:
return "accessories"
else:
pass # default"""
def upload_to_cloudinary(file_path: str, public_id: str, folder: str = "fashion_segments") -> Dict:
"""Upload file to Cloudinary and return response with URLs"""
try:
# Upload to Cloudinary
upload_result = cloudinary.uploader.upload(
file_path,
public_id=f"{folder}/{public_id}",
folder=folder,
resource_type="image",
format="png",
quality="auto:best",
fetch_format="auto"
)
# Generate optimized URL
optimized_url, _ = cloudinary_url(
upload_result['public_id'],
format="png",
quality="auto:best",
fetch_format="auto"
)
return {
'url': upload_result.get('secure_url', upload_result.get('url')),
'optimized_url': optimized_url,
'public_id': upload_result['public_id'],
'version': upload_result.get('version'),
'format': upload_result.get('format'),
'width': upload_result.get('width'),
'height': upload_result.get('height'),
'bytes': upload_result.get('bytes')
}
except Exception as e:
logger.error(f"Cloudinary upload failed: {e}")
raise HTTPException(status_code=500, detail=f"Upload failed: {e}")
def process_segmentation(image: Image.Image, processor, model, settings: Dict) -> tuple:
"""Process image segmentation"""
# Process with model
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
# Resize to original image size
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1], # height, width
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
# Extract bounding boxes
unique_classes = torch.unique(pred_seg)
segment_data = {}
total_pixels = pred_seg.numel()
for class_id in unique_classes:
coords = torch.where(pred_seg == class_id)
y_coords = coords[0].numpy()
x_coords = coords[1].numpy()
min_x, max_x = int(x_coords.min()), int(x_coords.max())
min_y, max_y = int(y_coords.min()), int(y_coords.max())
pixel_count = len(x_coords)
coverage = (pixel_count / total_pixels) * 100
segment_data[int(class_id)] = {
'bbox': (min_x, min_y, max_x, max_y),
'pixel_count': pixel_count,
'coverage_percent': coverage
}
return pred_seg, segment_data
def extract_segments(image: Image.Image, pred_seg, segment_data: Dict, settings: Dict) -> List[Dict]:
"""Extract individual segments and upload to Cloudinary"""
image_np = np.array(image)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
label_map = pred_seg.numpy().astype(np.uint8)
h, w = label_map.shape
extracted_segments = []
padding = settings.get("padding", 15)
# Create temporary directory for processing
temp_dir = tempfile.mkdtemp()
session_id = str(uuid.uuid4())[:8] # Shorter session ID
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
try:
for class_id, info in segment_data.items():
if class_id == 0: # Skip background
continue
x1, y1, x2, y2 = info['bbox']
# Apply padding
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(w - 1, x2 + padding)
y2 = min(h - 1, y2 + padding)
# Enhanced mask processing
mask = (label_map == class_id).astype(np.uint8)
mask_filled = ndimage.binary_fill_holes(mask).astype(np.uint8)
# Adaptive kernel size
segment_area = np.sum(mask_filled)
kernel_size = max(3, min(7, int(np.sqrt(segment_area) / 100)))
kernel = np.ones((kernel_size, kernel_size), np.uint8)
mask_cleaned = cv2.morphologyEx(mask_filled, cv2.MORPH_CLOSE, kernel, iterations=2)
mask_cleaned = cv2.morphologyEx(mask_cleaned, cv2.MORPH_OPEN, kernel, iterations=1)
# Smooth edges
mask_smooth = cv2.GaussianBlur(mask_cleaned.astype(np.float32), (3, 3), 1.0)
# Crop
cropped_mask_smooth = mask_smooth[y1:y2+1, x1:x2+1]
cropped_image = image_bgr[y1:y2+1, x1:x2+1]
# Create white background with grey outline
background = np.full(cropped_image.shape, 248, dtype=np.uint8)
mask_uint8 = (cropped_mask_smooth * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask_3d = np.stack([cropped_mask_smooth] * 3, axis=2)
# Composite image - just object + white background (no grey outline)
final_image = (cropped_image * mask_3d +
background * (1 - mask_3d)).astype(np.uint8)
# Enhance quality
final_image = enhance_image_quality(final_image)
# Save temporarily
class_name = SEGFORMER_LABELS.get(class_id, f"Class_{class_id}")
category_folder = get_category_folder(class_id)
filename = f"{class_id:02d}_{class_name.replace(' ', '_')}_{info['pixel_count']}px.png"
temp_filepath = os.path.join(temp_dir, filename)
cv2.imwrite(temp_filepath, final_image)
# Create public_id for Cloudinary
public_id = f"{timestamp}_{session_id}_{category_folder}_{class_id:02d}_{class_name.replace(' ', '_')}"
# Upload to Cloudinary
cloudinary_result = upload_to_cloudinary(
temp_filepath,
public_id,
folder=f"fashion_segments/{category_folder}"
)
extracted_segments.append({
'class_id': class_id,
'class_name': class_name,
'filename': filename,
'category': category_folder,
'pixel_count': info['pixel_count'],
'coverage_percent': info['coverage_percent'],
'cloudinary_url': cloudinary_result['optimized_url'],
'public_id': cloudinary_result['public_id']
})
logger.info(f"Extracted and uploaded: {class_name} ({info['pixel_count']:,} pixels, {info['coverage_percent']:.1f}% coverage)")
finally:
# Cleanup temporary directory
shutil.rmtree(temp_dir, ignore_errors=True)
return extracted_segments
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
await load_model()
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"model_loaded": "model" in model_cache,
"cloudinary_configured": bool(CLOUDINARY_CONFIG["cloud_name"])
}
@app.post("/segment", response_model=SegmentationResponse)
async def segment_fashion_items(request: SegmentationRequest):
"""
Segment fashion items from an image URL and return Cloudinary URLs for extracted segments
"""
start_time = datetime.now()
try:
# Load model
processor, model = await load_model()
# Download image
logger.info(f"Downloading image from: {request.image_url}")
image = download_image(request.image_url)
original_size = image.size
# Process segmentation in thread pool
loop = asyncio.get_event_loop()
pred_seg, segment_data = await loop.run_in_executor(
executor, process_segmentation, image, processor, model, request.settings
)
# Extract segments and upload to Cloudinary
extracted_segments = await loop.run_in_executor(
executor, extract_segments, image, pred_seg, segment_data, request.settings
)
# Calculate processing time
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
# Prepare response
segments = [SegmentInfo(**segment) for segment in extracted_segments]
metadata = {
'processing_time': processing_time,
'image_size': original_size,
'total_segments': len(segments),
'settings': request.settings,
'timestamp': datetime.now().isoformat(),
'storage_provider': 'cloudinary'
}
logger.info(f"Processing complete: {len(segments)} segments extracted and uploaded in {processing_time:.2f}s")
return SegmentationResponse(
success=True,
processing_time=processing_time,
total_segments=len(segments),
segments=segments,
metadata=metadata
)
except Exception as e:
logger.error(f"Processing failed: {e}")
return SegmentationResponse(
success=False,
processing_time=(datetime.now() - start_time).total_seconds(),
total_segments=0,
segments=[],
metadata={"error": str(e), "storage_provider": "cloudinary"}
)
@app.post("/segment/batch")
async def segment_multiple_images(image_urls: List[HttpUrl]):
"""
Process multiple images in batch
"""
results = []
for url in image_urls:
try:
request = SegmentationRequest(image_url=url)
result = await segment_fashion_items(request)
results.append({"url": str(url), "result": result})
except Exception as e:
results.append({"url": str(url), "error": str(e)})
return {"batch_results": results}
@app.delete("/segment/{public_id}")
async def delete_segment(public_id: str):
"""
Delete a segment from Cloudinary by public_id
"""
try:
result = cloudinary.uploader.destroy(public_id)
return {"success": True, "result": result}
except Exception as e:
logger.error(f"Failed to delete {public_id}: {e}")
raise HTTPException(status_code=500, detail=f"Deletion failed: {e}")
@app.get("/segment/transform/{public_id}")
async def get_transformed_url(
public_id: str,
width: Optional[int] = None,
height: Optional[int] = None,
quality: Optional[str] = "auto",
format: Optional[str] = "auto"
):
"""
Get a transformed URL for a segment with specified dimensions and quality
"""
try:
transformations = {
"quality": quality,
"fetch_format": format
}
if width:
transformations["width"] = width
if height:
transformations["height"] = height
url, options = cloudinary_url(public_id, **transformations)
return {
"original_public_id": public_id,
"transformed_url": url,
"transformations": transformations
}
except Exception as e:
logger.error(f"Failed to generate transformed URL: {e}")
raise HTTPException(status_code=500, detail=f"URL generation failed: {e}")
@app.get("/")
async def root():
request = {
"image_url": "https://res.cloudinary.com/dyvuvklpk/image/upload/v1751009512/MEN-Denim-id_00000089-46_7_additional_ow2h0l.png",
"settings": {
"padding": 15,
"background": "white",
"quality": "high",
"outline": "grey_2px"
}
}
await segment_fashion_items(SegmentationRequest(**request))
return {"message": "Successfully Finished Execution!", "version": "1.0.0"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)