Amarthya7's picture
Upload 6 files
9a01245 verified
|
raw
history blame
10.6 kB

MediSync: Multi-Modal Medical Analysis System

Comprehensive Technical Documentation

Table of Contents

  1. Introduction
  2. System Architecture
  3. Installation
  4. Usage
  5. Core Components
  6. Model Details
  7. API Reference
  8. Extending the System
  9. Troubleshooting
  10. References

Introduction

MediSync is a multi-modal AI system that combines X-ray image analysis with medical report text processing to provide comprehensive medical insights. By leveraging state-of-the-art deep learning models for both vision and language understanding, MediSync can:

  • Analyze chest X-ray images to detect abnormalities
  • Extract key clinical information from medical reports
  • Fuse insights from both modalities for enhanced diagnosis support
  • Provide comprehensive visualization of analysis results

This AI system demonstrates the power of multi-modal fusion in the healthcare domain, where integrating information from multiple sources can lead to more robust and accurate analyses.

System Architecture

MediSync follows a modular architecture with three main components:

  1. Image Analysis Module: Processes X-ray images using pre-trained vision models
  2. Text Analysis Module: Analyzes medical reports using NLP models
  3. Multimodal Fusion Module: Combines insights from both modalities

The system uses the following high-level workflow:

                      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                      β”‚    X-ray Image  β”‚
                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
                               β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Preprocessing  │───▢│  Image Analysis │───▢│                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚                 β”‚
                                               β”‚   Multimodal    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚     Fusion      │───▢ Results
β”‚ Medical Report  │───▢│  Text Analysis  │───▢│                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚                 β”‚
                                               β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Installation

Prerequisites

  • Python 3.8 or higher
  • Pip package manager

Setup Instructions

  1. Clone the repository:
git clone [repository-url]
cd mediSync
  1. Install dependencies:
pip install -r requirements.txt
  1. Download sample data:
python -m mediSync.utils.download_samples

Usage

Running the Application

To launch the MediSync application with the Gradio interface:

python run.py

This will:

  1. Download sample data if not already present
  2. Initialize the application
  3. Launch the Gradio web interface

Web Interface

MediSync provides a user-friendly web interface with three main tabs:

  1. Multimodal Analysis: Upload an X-ray image and enter a medical report for combined analysis
  2. Image Analysis: Upload an X-ray image for image-only analysis
  3. Text Analysis: Enter a medical report for text-only analysis

Command Line Usage

You can also use the core components directly from Python:

from mediSync.models import XRayImageAnalyzer, MedicalReportAnalyzer, MultimodalFusion

# Initialize models
fusion_model = MultimodalFusion()

# Analyze image and text
results = fusion_model.analyze("path/to/image.jpg", "Medical report text...")

# Get explanation
explanation = fusion_model.get_explanation(results)
print(explanation)

Core Components

Image Analysis Module

The XRayImageAnalyzer class is responsible for analyzing X-ray images:

  • Uses the DeiT (Data-efficient image Transformers) model fine-tuned on chest X-rays
  • Detects abnormalities and classifies findings
  • Provides confidence scores and primary findings

Key methods:

  • analyze(image_path): Analyzes an X-ray image
  • get_explanation(results): Generates a human-readable explanation

Text Analysis Module

The MedicalReportAnalyzer class processes medical report text:

  • Extracts medical entities (conditions, treatments, tests)
  • Assesses severity level
  • Extracts key findings
  • Suggests follow-up actions

Key methods:

  • extract_entities(text): Extracts medical entities
  • assess_severity(text): Determines severity level
  • extract_findings(text): Extracts key clinical findings
  • suggest_followup(text, entities, severity): Suggests follow-up actions
  • analyze(text): Performs comprehensive analysis

Multimodal Fusion Module

The MultimodalFusion class combines insights from both modalities:

  • Calculates agreement between image and text analyses
  • Determines confidence-weighted findings
  • Provides comprehensive severity assessment
  • Merges follow-up recommendations

Key methods:

  • analyze_image(image_path): Analyzes image only
  • analyze_text(text): Analyzes text only
  • analyze(image_path, report_text): Performs multimodal analysis
  • get_explanation(fused_results): Generates comprehensive explanation

Model Details

X-ray Analysis Model

  • Model: facebook/deit-base-patch16-224-medical-cxr
  • Architecture: Data-efficient image Transformer (DeiT)
  • Training Data: Chest X-ray datasets
  • Input Size: 224x224 pixels
  • Output: Classification probabilities for various conditions

Medical Text Analysis Models

  • Entity Recognition Model: samrawal/bert-base-uncased_medical-ner
  • Classification Model: medicalai/ClinicalBERT
  • Architecture: BERT-based transformer models
  • Training Data: Medical text and reports

API Reference

XRayImageAnalyzer

from mediSync.models import XRayImageAnalyzer

# Initialize
analyzer = XRayImageAnalyzer(model_name="facebook/deit-base-patch16-224-medical-cxr")

# Analyze image
results = analyzer.analyze("path/to/image.jpg")

# Get explanation
explanation = analyzer.get_explanation(results)

MedicalReportAnalyzer

from mediSync.models import MedicalReportAnalyzer

# Initialize
analyzer = MedicalReportAnalyzer()

# Analyze report
results = analyzer.analyze("Medical report text...")

# Access specific components
entities = results["entities"]
severity = results["severity"]
findings = results["findings"]
recommendations = results["followup_recommendations"]

MultimodalFusion

from mediSync.models import MultimodalFusion

# Initialize
fusion = MultimodalFusion()

# Multimodal analysis
results = fusion.analyze("path/to/image.jpg", "Medical report text...")

# Get explanation
explanation = fusion.get_explanation(results)

Extending the System

Adding New Models

To add a new image analysis model:

  1. Create a new class that follows the same interface as XRayImageAnalyzer
  2. Update the MultimodalFusion class to use your new model
class NewXRayModel:
    def __init__(self, model_name, device=None):
        # Initialize your model
        pass
        
    def analyze(self, image_path):
        # Implement analysis logic
        return results
        
    def get_explanation(self, results):
        # Generate explanation
        return explanation

Custom Preprocessing

You can extend the preprocessing utilities in utils/preprocessing.py for custom data preparation:

def my_custom_preprocessor(image_path, **kwargs):
    # Implement custom preprocessing
    return processed_image

Visualization Extensions

To add new visualization options, extend the utilities in utils/visualization.py:

def my_custom_visualization(results, **kwargs):
    # Create custom visualization
    return figure

Troubleshooting

Common Issues

  1. Model Loading Errors

    • Ensure you have a stable internet connection for downloading models
    • Check that you have sufficient disk space
    • Try specifying a different model checkpoint
  2. Image Processing Errors

    • Ensure images are in a supported format (JPEG, PNG)
    • Check that the image is a valid X-ray image
    • Try preprocessing the image manually using the utility functions
  3. Performance Issues

    • For faster inference, use a GPU if available
    • Reduce image resolution if processing is too slow
    • Use the text-only analysis for quicker results

Logging

MediSync uses Python's logging module for debug information:

import logging
logging.basicConfig(level=logging.DEBUG)

Log files are saved to mediSync.log in the application directory.

References

Datasets

Papers

  • He, K., et al. (2020). "Vision Transformers for Medical Image Analysis"
  • Irvin, J., et al. (2019). "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison"
  • Johnson, A.E.W., et al. (2019). "MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs"

Tools and Libraries


License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • The development of MediSync was inspired by recent advances in multi-modal learning in healthcare.
  • Special thanks to the open-source community for providing pre-trained models and tools.