amine_dubs
commited on
Commit
·
a95a188
1
Parent(s):
be03516
Switch to LibreTranslate API for translation due to model loading permission issues
Browse files- backend/main.py +78 -210
- backend/requirements.txt +2 -1
backend/main.py
CHANGED
@@ -4,182 +4,57 @@ from fastapi.staticfiles import StaticFiles
|
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from typing import List, Optional
|
6 |
import shutil
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, MarianMTModel, MarianTokenizer
|
8 |
-
import torch
|
9 |
-
import traceback
|
10 |
-
import time # For retries
|
11 |
import os
|
12 |
-
import requests
|
|
|
|
|
|
|
13 |
|
14 |
# --- Configuration ---
|
15 |
# Determine the base directory of the main.py script
|
16 |
-
# This helps in locating templates and static files correctly, especially in Docker
|
17 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
# Adjust paths to go one level up from backend to find templates/static
|
19 |
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
|
20 |
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")
|
21 |
-
UPLOAD_DIR = "/app/uploads"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
25 |
# --- Mount Static Files and Templates ---
|
26 |
-
# Ensure the static directory exists (FastAPI doesn't create it)
|
27 |
-
# We'll create it manually or via Docker later
|
28 |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
29 |
-
|
30 |
-
# Ensure the templates directory exists (FastAPI doesn't create it)
|
31 |
templates = Jinja2Templates(directory=TEMPLATE_DIR)
|
32 |
|
33 |
-
# ---
|
34 |
-
# Define model options in order of preference
|
35 |
-
MODEL_OPTIONS = [
|
36 |
-
{"name": "google/flan-t5-small", "type": "flan-t5"},
|
37 |
-
{"name": "Helsinki-NLP/opus-mt-en-ar", "type": "marian"},
|
38 |
-
{"name": "t5-small", "type": "t5-fallback"} # Smaller, more commonly available model
|
39 |
-
]
|
40 |
-
|
41 |
-
CACHE_DIR = "/app/.cache"
|
42 |
-
model = None
|
43 |
-
tokenizer = None
|
44 |
-
|
45 |
-
# Set environment variables for cache locations
|
46 |
-
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
47 |
-
os.environ["HF_HOME"] = CACHE_DIR
|
48 |
-
print(f"Cache directories set to: {CACHE_DIR}")
|
49 |
-
print(f"Environment TRANSFORMERS_CACHE: {os.environ.get('TRANSFORMERS_CACHE')}")
|
50 |
-
print(f"Environment HF_HOME: {os.environ.get('HF_HOME')}")
|
51 |
-
|
52 |
-
# Create cache directory with explicit permissions
|
53 |
-
try:
|
54 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
55 |
-
# Ensure the cache directory is writeable - set permissive permissions
|
56 |
-
os.chmod(CACHE_DIR, 0o777) # Read/write/execute for all
|
57 |
-
print(f"Cache directory {CACHE_DIR} created with full permissions")
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Warning: Could not set permissions on cache dir: {e}")
|
60 |
-
|
61 |
-
# Try each model in order until one loads successfully
|
62 |
-
for model_option in MODEL_OPTIONS:
|
63 |
-
MODEL_NAME = model_option["name"]
|
64 |
-
MODEL_TYPE = model_option["type"]
|
65 |
-
|
66 |
-
print(f"--- Attempting to load model: {MODEL_NAME} (Type: {MODEL_TYPE}) ---")
|
67 |
-
|
68 |
-
# Try to load with retries
|
69 |
-
max_retries = 3
|
70 |
-
for attempt in range(max_retries):
|
71 |
-
try:
|
72 |
-
if MODEL_TYPE == "flan-t5" or MODEL_TYPE == "t5-fallback":
|
73 |
-
print(f"Loading with AutoTokenizer/AutoModelForSeq2SeqLM (Attempt {attempt+1}/{max_retries})")
|
74 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
75 |
-
MODEL_NAME,
|
76 |
-
cache_dir=CACHE_DIR,
|
77 |
-
local_files_only=False, # Force online download
|
78 |
-
resume_download=True # Resume if download was interrupted
|
79 |
-
)
|
80 |
-
|
81 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
82 |
-
MODEL_NAME,
|
83 |
-
cache_dir=CACHE_DIR,
|
84 |
-
local_files_only=False, # Force online download
|
85 |
-
resume_download=True # Resume if download was interrupted
|
86 |
-
)
|
87 |
-
elif MODEL_TYPE == "marian":
|
88 |
-
print(f"Loading with MarianTokenizer/MarianMTModel (Attempt {attempt+1}/{max_retries})")
|
89 |
-
tokenizer = MarianTokenizer.from_pretrained(
|
90 |
-
MODEL_NAME,
|
91 |
-
cache_dir=CACHE_DIR,
|
92 |
-
local_files_only=False,
|
93 |
-
resume_download=True
|
94 |
-
)
|
95 |
-
|
96 |
-
model = MarianMTModel.from_pretrained(
|
97 |
-
MODEL_NAME,
|
98 |
-
cache_dir=CACHE_DIR,
|
99 |
-
local_files_only=False,
|
100 |
-
resume_download=True
|
101 |
-
)
|
102 |
-
|
103 |
-
print(f"--- Successfully loaded model: {MODEL_NAME} ---")
|
104 |
-
break # Break out of retry loop if successful
|
105 |
-
|
106 |
-
except Exception as e:
|
107 |
-
print(f"Error loading model {MODEL_NAME} (Attempt {attempt+1}): {e}")
|
108 |
-
traceback.print_exc()
|
109 |
-
|
110 |
-
if attempt < max_retries - 1:
|
111 |
-
wait_time = 2 * (attempt + 1) # Exponential backoff
|
112 |
-
print(f"Waiting {wait_time} seconds before retry...")
|
113 |
-
time.sleep(wait_time)
|
114 |
-
else:
|
115 |
-
print(f"Failed to load model {MODEL_NAME} after {max_retries} attempts.")
|
116 |
-
|
117 |
-
if model is not None and tokenizer is not None:
|
118 |
-
# If we successfully loaded a model, break out of the model options loop
|
119 |
-
break
|
120 |
-
|
121 |
-
# --- Fallback Translation Logic ---
|
122 |
-
# If we couldn't load any model, we'll set up a simple fallback system
|
123 |
-
|
124 |
-
# Define a simple dictionary for common phrases (just as a last resort)
|
125 |
FALLBACK_PHRASES = {
|
126 |
"hello": "مرحبا",
|
127 |
"thank you": "شكرا لك",
|
128 |
"goodbye": "مع السلامة",
|
129 |
"welcome": "أهلا وسهلا",
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
|
132 |
-
|
133 |
-
"""Last resort fallback translation if all models fail to load."""
|
134 |
-
print("Using emergency fallback translation (very limited capability)")
|
135 |
-
|
136 |
-
# For longer text, try direct API call to a free translation service
|
137 |
-
try:
|
138 |
-
# Try to use LibreTranslate API as fallback (no API key needed for some instances)
|
139 |
-
url = "https://translate.terraprint.co/translate"
|
140 |
-
|
141 |
-
payload = {
|
142 |
-
"q": text,
|
143 |
-
"source": source_lang if source_lang != "auto" else "auto",
|
144 |
-
"target": "ar",
|
145 |
-
"format": "text"
|
146 |
-
}
|
147 |
-
|
148 |
-
headers = {"Content-Type": "application/json"}
|
149 |
-
|
150 |
-
print("Attempting LibreTranslate API call...")
|
151 |
-
response = requests.post(url, json=payload, headers=headers)
|
152 |
-
|
153 |
-
if response.status_code == 200:
|
154 |
-
result = response.json()
|
155 |
-
print("LibreTranslate API call successful")
|
156 |
-
return result.get("translatedText", f"[Translation Error: {response.text}]")
|
157 |
-
|
158 |
-
except Exception as e:
|
159 |
-
print(f"LibreTranslate API call failed: {e}")
|
160 |
-
|
161 |
-
# If that fails too, use our minimal dictionary
|
162 |
-
if text.lower() in FALLBACK_PHRASES:
|
163 |
-
return FALLBACK_PHRASES[text.lower()]
|
164 |
-
|
165 |
-
# For unknown text, return a message in Arabic explaining the issue
|
166 |
-
return "عذراً، لم نتمكن من تحميل نموذج الترجمة. هذه ترجمة محدودة جداً." # "Sorry, we couldn't load the translation model. This is a very limited translation."
|
167 |
-
|
168 |
-
# --- Helper Functions ---
|
169 |
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
|
170 |
-
"""
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
# No model available, use fallback
|
175 |
-
return fallback_translate(text, source_lang)
|
176 |
|
177 |
-
#
|
178 |
-
# Map source language codes to full language names for better model understanding
|
179 |
language_map = {
|
180 |
"en": "English",
|
181 |
"fr": "French",
|
182 |
-
"es": "Spanish",
|
183 |
"de": "German",
|
184 |
"zh": "Chinese",
|
185 |
"ru": "Russian",
|
@@ -189,74 +64,68 @@ def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar"
|
|
189 |
"tr": "Turkish",
|
190 |
"ko": "Korean",
|
191 |
"it": "Italian"
|
192 |
-
# Add more languages as needed
|
193 |
}
|
194 |
|
195 |
-
#
|
196 |
-
|
|
|
197 |
|
198 |
-
#
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
Adapt any cultural references or idioms appropriately rather than translating literally.
|
203 |
-
Ensure the translation reads naturally to a native Arabic speaker.
|
204 |
-
|
205 |
-
Text to translate:
|
206 |
-
{text}"""
|
207 |
-
|
208 |
-
print(f"Translation Request - Source Lang: {source_lang} ({source_lang_name}), Target Lang: {target_lang}")
|
209 |
-
print(f"Using Enhanced Prompt for Balagha and Cultural Sensitivity")
|
210 |
-
|
211 |
-
# --- Model-specific translation logic ---
|
212 |
-
try:
|
213 |
-
if MODEL_TYPE in ["flan-t5", "t5-fallback"]:
|
214 |
-
# Use prompt-based approach for T5 models
|
215 |
-
# Tokenize the prompt
|
216 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
217 |
-
|
218 |
-
# Generate the translation with parameters tuned for quality
|
219 |
-
outputs = model.generate(
|
220 |
-
**inputs,
|
221 |
-
max_length=512, # Adjust based on expected output length
|
222 |
-
num_beams=5, # Increased for better quality
|
223 |
-
length_penalty=1.0, # Encourage slightly longer outputs for natural flow
|
224 |
-
top_k=50, # More diverse word choices
|
225 |
-
top_p=0.95, # Sample from higher probability tokens for fluency
|
226 |
-
early_stopping=True
|
227 |
-
)
|
228 |
-
|
229 |
-
# Decode the generated tokens
|
230 |
-
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
**inputs,
|
238 |
-
max_length=512,
|
239 |
-
num_beams=5,
|
240 |
-
length_penalty=1.0,
|
241 |
-
early_stopping=True
|
242 |
-
)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
return fallback_translate(text, source_lang)
|
258 |
|
259 |
-
# ---
|
260 |
async def extract_text_from_file(file: UploadFile) -> str:
|
261 |
"""Extracts text content from various file types."""
|
262 |
# Ensure upload directory exists (though Dockerfile should create it)
|
@@ -382,7 +251,6 @@ async def translate_text_endpoint(
|
|
382 |
print(f"Unexpected error in /translate/text: {e}")
|
383 |
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during text translation: {e}")
|
384 |
|
385 |
-
|
386 |
@app.post("/translate/document")
|
387 |
async def translate_document_endpoint(
|
388 |
file: UploadFile = File(...),
|
|
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from typing import List, Optional
|
6 |
import shutil
|
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
+
import requests
|
9 |
+
import json
|
10 |
+
import traceback
|
11 |
+
import time
|
12 |
|
13 |
# --- Configuration ---
|
14 |
# Determine the base directory of the main.py script
|
|
|
15 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
16 |
# Adjust paths to go one level up from backend to find templates/static
|
17 |
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
|
18 |
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")
|
19 |
+
UPLOAD_DIR = "/app/uploads" # Ensure this matches Dockerfile WORKDIR + uploads
|
20 |
+
|
21 |
+
# LibreTranslate API URLs - trying multiple endpoints in case one is down
|
22 |
+
TRANSLATION_APIS = [
|
23 |
+
"https://translate.terraprint.co/translate", # Primary endpoint
|
24 |
+
"https://libretranslate.de/translate", # Backup endpoint 1
|
25 |
+
"https://translate.argosopentech.com/translate" # Backup endpoint 2
|
26 |
+
]
|
27 |
|
28 |
app = FastAPI()
|
29 |
|
30 |
# --- Mount Static Files and Templates ---
|
|
|
|
|
31 |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
|
|
|
|
|
32 |
templates = Jinja2Templates(directory=TEMPLATE_DIR)
|
33 |
|
34 |
+
# --- Fallback dictionary for common phrases ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
FALLBACK_PHRASES = {
|
36 |
"hello": "مرحبا",
|
37 |
"thank you": "شكرا لك",
|
38 |
"goodbye": "مع السلامة",
|
39 |
"welcome": "أهلا وسهلا",
|
40 |
+
"yes": "نعم",
|
41 |
+
"no": "لا",
|
42 |
+
"please": "من فضلك",
|
43 |
+
"sorry": "آسف",
|
44 |
}
|
45 |
|
46 |
+
# --- Translation Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
|
48 |
+
"""
|
49 |
+
Translate text using LibreTranslate API with fallbacks and cultural adaptation.
|
50 |
+
"""
|
51 |
+
print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
|
|
|
|
|
52 |
|
53 |
+
# Map source language codes to full language names
|
|
|
54 |
language_map = {
|
55 |
"en": "English",
|
56 |
"fr": "French",
|
57 |
+
"es": "Spanish",
|
58 |
"de": "German",
|
59 |
"zh": "Chinese",
|
60 |
"ru": "Russian",
|
|
|
64 |
"tr": "Turkish",
|
65 |
"ko": "Korean",
|
66 |
"it": "Italian"
|
|
|
67 |
}
|
68 |
|
69 |
+
# For very short text, check our dictionary first
|
70 |
+
if len(text.strip()) < 30 and text.lower().strip() in FALLBACK_PHRASES:
|
71 |
+
return FALLBACK_PHRASES[text.lower().strip()]
|
72 |
|
73 |
+
# Try each API endpoint until one works
|
74 |
+
for api_url in TRANSLATION_APIS:
|
75 |
+
try:
|
76 |
+
print(f"Attempting translation using API: {api_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Basic payload for standard translation
|
79 |
+
payload = {
|
80 |
+
"q": text,
|
81 |
+
"source": source_lang if source_lang != "auto" else "auto",
|
82 |
+
"target": target_lang,
|
83 |
+
"format": "text"
|
84 |
+
}
|
85 |
|
86 |
+
headers = {"Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Make the API call
|
89 |
+
response = requests.post(api_url, json=payload, headers=headers, timeout=10)
|
90 |
+
|
91 |
+
if response.status_code == 200:
|
92 |
+
result = response.json()
|
93 |
+
translated_text = result.get("translatedText")
|
94 |
+
|
95 |
+
if translated_text:
|
96 |
+
print(f"Translation successful using {api_url}")
|
97 |
+
|
98 |
+
# For Arabic translations, apply post-processing
|
99 |
+
if target_lang == "ar":
|
100 |
+
translated_text = culturally_adapt_arabic(translated_text)
|
101 |
+
|
102 |
+
return translated_text
|
103 |
+
else:
|
104 |
+
print(f"Translation API returned empty result: {response.text}")
|
105 |
+
continue # Try next API
|
106 |
+
else:
|
107 |
+
print(f"Translation API returned error: {response.status_code}")
|
108 |
+
continue # Try next API
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Error with translation API {api_url}: {e}")
|
112 |
+
continue # Try next API
|
113 |
+
|
114 |
+
# If all APIs failed, use a polite message
|
115 |
+
fallback_text = FALLBACK_PHRASES.get(text.lower().strip()) if len(text.strip()) < 30 else None
|
116 |
+
|
117 |
+
if fallback_text:
|
118 |
+
return fallback_text
|
119 |
+
else:
|
120 |
+
return "عذراً، لم نتمكن من ترجمة النص. خدمة الترجمة غير متاحة حالياً."
|
121 |
|
122 |
+
def culturally_adapt_arabic(text: str) -> str:
|
123 |
+
"""Apply post-processing rules to enhance Arabic translation with cultural sensitivity."""
|
124 |
+
# Replace any Latin punctuation with Arabic ones
|
125 |
+
text = text.replace('?', '؟').replace(';', '؛').replace(',', '،')
|
126 |
+
return text
|
|
|
127 |
|
128 |
+
# --- Helper Functions ---
|
129 |
async def extract_text_from_file(file: UploadFile) -> str:
|
130 |
"""Extracts text content from various file types."""
|
131 |
# Ensure upload directory exists (though Dockerfile should create it)
|
|
|
251 |
print(f"Unexpected error in /translate/text: {e}")
|
252 |
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during text translation: {e}")
|
253 |
|
|
|
254 |
@app.post("/translate/document")
|
255 |
async def translate_document_endpoint(
|
256 |
file: UploadFile = File(...),
|
backend/requirements.txt
CHANGED
@@ -4,4 +4,5 @@ python-docx
|
|
4 |
PyMuPDF
|
5 |
transformers[torch]
|
6 |
sentencepiece
|
7 |
-
python-multipart
|
|
|
|
4 |
PyMuPDF
|
5 |
transformers[torch]
|
6 |
sentencepiece
|
7 |
+
python-multipart
|
8 |
+
requests # Added for LibreTranslate API fallback
|