Surya-ocr / app.py
AmrElsayeh's picture
Update app.py
3729693 verified
import os
import logging
import cv2
import numpy as np
from pdf2image import convert_from_path
from pytesseract import Output, pytesseract
from scipy.ndimage import rotate
from surya.ocr import run_ocr
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
import imutils
import gradio as gr
import subprocess
import glob
from PIL import Image, ImageDraw
from pytesseract import Output
import pytesseract
# Function to correct image skew
def correct_skew(image, delta=0.1, limit=3):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 41, 15
)
scores = []
angles = np.arange(-limit, limit + delta, delta)
for angle in angles:
_, score = determine_score(thresh, angle)
scores.append(score)
best_angle = angles[scores.index(max(scores))]
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, best_angle, 1.0)
rotated = cv2.warpAffine(
image, M, (w, h), flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT, borderValue=(255, 255, 255)
)
print(f"[INFO] Detected skew angle: {best_angle} degrees")
return rotated
def determine_score(arr, angle):
data = rotate(arr, angle, reshape=False, order=0)
histogram = np.sum(data, axis=1, dtype=float)
score = np.sum((histogram[1:] - histogram[:-1]) ** 2, dtype=float)
return histogram, score
def correct_image_rotation(image):
if isinstance(image, Image.Image):
original_size = image.size
print('image original size is:', original_size)
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
image_required = image.copy()
h, w = image_required.shape[:2]
cropped_rotated = cv2.resize(image_required, (w * 4, h * 4))
results = pytesseract.image_to_osd(
cropped_rotated,
output_type=Output.DICT,
config='--dpi 300 --psm 0 -c min_characters_to_try=5 -c tessedit_script_lang=Arabic'
)
if results["script"] not in ['Bengali', 'Latin', 'Greek', 'Katakana'] and results["orientation"] != 180:
print("[INFO] Detected orientation: {}".format(results["orientation"]))
print("[INFO] Rotate by {} degrees to correct".format(results["rotate"]))
print("[INFO] Detected script: {}".format(results["script"]))
rotated = imutils.rotate_bound(image, angle=results['rotate'])
if results['rotate'] in [90, 270]:
rotated_h, rotated_w = rotated.shape[:2]
original_size = (rotated_w, rotated_h)
print(f"Rotated dimensions: {rotated_w}x{rotated_h}")
if (rotated_w, rotated_h) != (h, w):
rotated = cv2.resize(rotated, (w, h))
else:
print("[INFO] Major orientation is correct, proceeding to fine-tune...")
rotated = image
final_rotated = correct_skew(rotated)
rotated_pil = Image.fromarray(cv2.cvtColor(final_rotated, cv2.COLOR_BGR2RGB))
print('resize the image to its original size: ', original_size)
corrected_image = rotated_pil.resize(original_size, Image.Resampling.LANCZOS)
return corrected_image
# Function to process PDF or image and detect text lines
def process_pdf(file_path):
# Define the results directories
detected_text_dir = "/home/Detected_Text_Line"
detected_layout_dir = "/home/Detected_layout"
ocr_dir = "/home/OCR"
# Ensure the results directories exist
os.makedirs(detected_text_dir, exist_ok=True)
os.makedirs(detected_layout_dir, exist_ok=True)
os.makedirs(ocr_dir, exist_ok=True)
# Extract the PDF name (without extension)
pdf_name = os.path.splitext(os.path.basename(file_path))[0]
# Step 1: Run surya_detect
try:
subprocess.run(
["surya_detect", "--results_dir", detected_text_dir, "--images", file_path],
check=True,
)
print(f"[INFO] surya_detect completed for {file_path}")
except subprocess.CalledProcessError as e:
print(f"[ERROR] surya_detect failed: {e}")
return None
# Step 2: Remove column files (if they exist)
column_files = glob.glob(f"{detected_text_dir}/{pdf_name}/*column*")
if column_files:
try:
subprocess.run(["rm"] + column_files, check=True)
print(f"[INFO] Removed column files for {pdf_name}")
except subprocess.CalledProcessError as e:
print(f"[ERROR] Failed to remove column files: {e}")
else:
print(f"[INFO] No column files found for {pdf_name}")
# Return the path to the directory containing the output images
output_dir = os.path.join(detected_text_dir, pdf_name)
return output_dir
# Function to handle the Gradio interface
def gradio_interface(file):
# Step 1: Correct the skew of the input file
corrected_images = []
if file.name.lower().endswith('.pdf'):
images = convert_from_path(file.name)
for i, image in enumerate(images):
corrected_image = correct_image_rotation(image)
corrected_images.append(corrected_image)
else:
image = Image.open(file.name)
corrected_image = correct_image_rotation(image)
corrected_images.append(corrected_image)
# Save corrected images to a folder
corrected_dir = "/home/Corrected_Images"
os.makedirs(corrected_dir, exist_ok=True)
for i, corrected_image in enumerate(corrected_images):
corrected_image.save(os.path.join(corrected_dir, f"corrected_{i}.png"))
# Step 2: Detect text lines in the corrected images
detected_dir = process_pdf(corrected_dir)
if detected_dir is None:
# Return a placeholder image with an error message
error_image = Image.new("RGB", (400, 200), color="red")
error_draw = ImageDraw.Draw(error_image)
error_draw.text((10, 10), "Error detecting text lines. Check the logs for details.", fill="white")
return corrected_images, [error_image]
# Load and return the detected text line images
detected_images = []
for image_file in sorted(os.listdir(detected_dir)):
if image_file.endswith((".png", ".jpg", ".jpeg")):
image_path = os.path.join(detected_dir, image_file)
detected_images.append(Image.open(image_path))
if not detected_images:
# Return a placeholder image if no output images are found
placeholder_image = Image.new("RGB", (400, 200), color="gray")
placeholder_draw = ImageDraw.Draw(placeholder_image)
placeholder_draw.text((10, 10), "No detected text line images found.", fill="white")
return corrected_images, [placeholder_image]
return corrected_images, detected_images
# Gradio Interface
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.File(label="Upload PDF or Image"),
outputs=[
gr.Gallery(label="Corrected Images", columns=[2], height="auto"),
gr.Gallery(label="Detected Text Lines", columns=[2], height="auto"),
],
title="PDF/Image Skew Correction and Text Line Detection",
description="Upload a PDF or image to correct skew and detect text lines.",
)
iface.launch()