Weak-Cube-RCNN / cubercnn /data /generate_ground_segmentations.py
AndreasLH's picture
init
db3da1e
from segment_anything import sam_model_registry
from segment_anything.modeling import Sam
import os
def init_segmentation(device='cpu') -> Sam:
# 1) first cd into the segment_anything and pip install -e .
# to get the model stary in the root foler folder and run the download_model.sh
# 2) chmod +x download_model.sh && ./download_model.sh
# the largest model: https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
# this is the smallest model
if os.path.exists('sam-hq/sam_hq_vit_b.pth'):
sam_checkpoint = "sam-hq/sam_hq_vit_b.pth"
model_type = "vit_b"
else:
sam_checkpoint = "sam-hq/sam_hq_vit_tiny.pth"
model_type = "vit_tiny"
print(f'SAM device: {device}, model_type: {model_type}')
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
return sam
if __name__ == '__main__':
from segment_anything.utils.transforms import ResizeLongestSide
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as T2
from matplotlib import pyplot as plt
from PIL import Image
from tqdm import tqdm
from torchvision.ops import box_convert
import groundingdino.datasets.transforms as T
from cubercnn import data
from detectron2.data.catalog import MetadataCatalog
from groundingdino.util.inference import load_image, load_model, predict
from priors import get_config_and_filter_settings
import supervision as sv
def init_dataset():
''' dataloader stuff.
currently not used anywhere, because I'm not sure what the difference between the omni3d dataset and load omni3D json functions are. this is a 3rd alternative to this. The train script calls something similar to this.'''
cfg, filter_settings = get_config_and_filter_settings()
dataset_names = ['SUNRGBD_train','SUNRGBD_val','SUNRGBD_test', 'KITTI_train', 'KITTI_val', 'KITTI_test',]
dataset_paths_to_json = ['datasets/Omni3D/'+dataset_name+'.json' for dataset_name in dataset_names]
# for dataset_name in dataset_names:
# simple_register(dataset_name, filter_settings, filter_empty=True)
# Get Image and annotations
datasets = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
infos = datasets.dataset['info']
dataset_id_to_unknown_cats = {}
possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
dataset_id_to_src = {}
for info in infos:
dataset_id = info['id']
known_category_training_ids = set()
if not dataset_id in dataset_id_to_src:
dataset_id_to_src[dataset_id] = info['source']
for id in info['known_category_ids']:
if id in dataset_id_to_contiguous_id:
known_category_training_ids.add(dataset_id_to_contiguous_id[id])
# determine and store the unknown categories.
unknown_categories = possible_categories - known_category_training_ids
dataset_id_to_unknown_cats[dataset_id] = unknown_categories
return datasets
def load_image(image_path: str, device) -> tuple[torch.Tensor, torch.Tensor]:
transform = T.Compose(
[
# T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
transform2 = T2.ToTensor()
image_source = Image.open(image_path).convert("RGB")
image = transform2(image_source).to(device)
image_transformed, _ = transform(image_source, None)
return image, image_transformed.to(device)
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: list[str]) -> np.ndarray:
"""
This function annotates an image with bounding boxes and labels.
Parameters:
image_source (np.ndarray): The source image to be annotated.
boxes (torch.Tensor): A tensor containing bounding box coordinates.
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
phrases (List[str]): A list of labels for each bounding box.
Returns:
np.ndarray: The annotated image.
"""
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [
f"{phrase} {logit:.2f}"
for phrase, logit
in zip(phrases, logits)
]
box_annotator = sv.BoxAnnotator()
# annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
annotated_frame = image_source.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
return annotated_frame
datasets = init_dataset()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# model.to(device)
segmentor = init_segmentation(device=device)
os.makedirs('datasets/ground_maps', exist_ok=True)
model = load_model("GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", "GroundingDINO/weights/groundingdino_swint_ogc.pth", device=device)
TEXT_PROMPT = "ground"
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
noground = 0
no_ground_idx = []
# **** to annotate full dataset ****
for img_id, img_info in tqdm(datasets.imgs.items()):
file_path = img_info['file_path']
w = img_info['width']
h = img_info['height']
# **** to annotate full dataset ****
# **** to annotate demo images ****
# for img_id in tqdm(os.listdir('datasets/coco_examples')):
# file_path = 'coco_examples/'+img_id
image_source, image = load_image('datasets/'+file_path, device=device)
# **** to annotate demo images ****
boxes, logits, phrases = predict(
model=model,
image=image,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD,
device=device
)
if len(boxes) == 0:
print(f"No ground found for {img_id}")
noground += 1
# save a ground map that is all zeros
no_ground_idx.append(img_id)
continue
# only want box corresponding to max logit
max_logit_idx = torch.argmax(logits)
logit = logits[max_logit_idx].unsqueeze(0)
box = boxes[max_logit_idx].unsqueeze(0)
phrase = [phrases[max_logit_idx]]
_, h, w = image_source.shape
box = box * torch.tensor([w, h, w, h], device=device)
xyxy = box_convert(boxes=box, in_fmt="cxcywh", out_fmt="xyxy")
image = image.unsqueeze(0)
org_shape = image.shape[-2:]
resize_transform = ResizeLongestSide(segmentor.image_encoder.img_size)
batched_input = []
images = resize_transform.apply_image_torch(image*1.0)# .permute(2, 0, 1).contiguous()
for image, boxes in zip(images, xyxy):
transformed_boxes = resize_transform.apply_boxes_torch(boxes, org_shape) # Bx4
batched_input.append({'image': image, 'boxes': transformed_boxes, 'original_size':org_shape})
seg_out = segmentor(batched_input, multimask_output=False)
mask_per_image = seg_out[0]['masks']
nnz = torch.count_nonzero(mask_per_image, dim=(-2, -1))
indices = torch.nonzero(nnz <= 1000).flatten()
if len(indices) > 0:
noground += 1
# save a ground map that is all zeros
no_ground_idx.append(img_id)
np.savez_compressed(f'datasets/ground_maps/{img_id}.npz', mask=mask_per_image.cpu()[0,0,:,:].numpy())
print(f"Could not find ground for {noground} images")
df = pd.DataFrame(no_ground_idx, columns=['img_id'])
df.to_csv('datasets/no_ground_idx.csv', index=False)