File size: 19,578 Bytes
d65b6e8
66992f6
640dd0e
b9dea2c
af81629
 
 
66992f6
b9dea2c
 
 
c263c26
b9dea2c
c263c26
b9dea2c
640dd0e
 
 
 
af81629
640dd0e
 
 
 
 
 
af81629
 
 
 
640dd0e
af81629
 
b9dea2c
 
af81629
 
640dd0e
66992f6
 
640dd0e
 
 
 
 
 
af81629
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
b9dea2c
640dd0e
af81629
 
640dd0e
 
 
 
66992f6
 
640dd0e
af81629
640dd0e
66992f6
af81629
 
 
640dd0e
 
 
 
 
b9dea2c
640dd0e
 
 
af81629
b9dea2c
640dd0e
af81629
 
 
66992f6
af81629
 
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
 
 
 
 
 
66992f6
af81629
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
640dd0e
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
 
 
66992f6
 
 
af81629
b9dea2c
 
 
 
117eca9
b9dea2c
117eca9
b9dea2c
 
 
117eca9
b9dea2c
 
 
117eca9
b9dea2c
 
25dcfd9
b9dea2c
25dcfd9
b9dea2c
 
25dcfd9
 
b9dea2c
 
 
640dd0e
 
 
b9dea2c
 
 
 
 
 
 
117eca9
b9dea2c
 
 
 
 
 
 
66992f6
640dd0e
b9dea2c
640dd0e
 
b9dea2c
640dd0e
b9dea2c
640dd0e
b9dea2c
 
 
 
 
 
 
 
 
 
 
 
640dd0e
b9dea2c
640dd0e
 
b9dea2c
 
 
 
117eca9
b9dea2c
 
 
25dcfd9
b9dea2c
 
 
 
 
66992f6
b9dea2c
 
c263c26
b9dea2c
 
c263c26
b9dea2c
 
 
88f78ff
b9dea2c
66992f6
 
b9dea2c
 
25dcfd9
b9dea2c
 
 
af81629
b9dea2c
 
 
c263c26
b9dea2c
 
 
 
 
 
 
640dd0e
 
 
 
 
 
af81629
 
 
b9dea2c
66992f6
 
b9dea2c
640dd0e
b9dea2c
640dd0e
b9dea2c
640dd0e
b9dea2c
25dcfd9
af81629
b9dea2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af81629
 
 
b9dea2c
 
 
25dcfd9
 
b9dea2c
 
 
 
 
66992f6
b9dea2c
66992f6
b9dea2c
 
 
 
 
 
 
 
 
640dd0e
b9dea2c
 
 
66992f6
b9dea2c
 
af81629
 
640dd0e
b9dea2c
 
 
af81629
66992f6
b9dea2c
 
 
 
 
 
 
25dcfd9
b9dea2c
 
 
 
25dcfd9
b9dea2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640dd0e
 
b9dea2c
 
 
 
640dd0e
 
b9dea2c
 
 
 
 
 
 
 
 
 
66992f6
 
af81629
b9dea2c
 
640dd0e
 
b9dea2c
 
 
 
 
 
 
 
 
 
 
25dcfd9
 
b9dea2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
b9dea2c
66992f6
af81629
66992f6
b9dea2c
 
 
 
66992f6
25dcfd9
b9dea2c
66992f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import gradio as gr
import numpy as np
import torch
import torchaudio
import time
import os
import urllib.request
from scipy.spatial.distance import cosine
import threading
import queue
from collections import deque
import asyncio
from typing import Generator, Tuple, List, Optional

# Configuration parameters (keeping original models)
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
SAMPLE_RATE = 16000

# Speaker labels
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]

class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            from speechbrain.pretrained import EncoderClassifier
            
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class SpeakerChangeDetector:
    """Speaker change detector that supports configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.last_similarity = 0.0
        self.active_speakers = set([0])
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        if new_max > self.max_speakers:
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            if similarity < self.change_threshold:
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                elif len(self.active_speakers) < self.max_speakers:
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        if is_speaker_change:
            self.last_change_time = current_time
        
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_data):
        try:
            # Ensure audio is float32 and normalized
            if audio_data.dtype != np.float32:
                audio_data = audio_data.astype(np.float32)
            
            # Normalize if needed
            if np.abs(audio_data).max() > 1.0:
                audio_data = audio_data / np.abs(audio_data).max()
            
            # Extract embedding using the loaded encoder
            embedding = self.encoder.embed_utterance(audio_data)
            
            return embedding
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class RealTimeSpeakerDiarization:
    """Main class for real-time speaker diarization"""
    def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.change_threshold = change_threshold
        self.max_speakers = max_speakers
        self.transcript_history = []
        self.is_initialized = False
        
        # Threading components
        self.audio_queue = queue.Queue()
        self.processing_thread = None
        self.running = False
        
    async def initialize(self):
        """Initialize the speaker diarization system"""
        if self.is_initialized:
            return True
            
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Initializing ECAPA-TDNN model on {device_str}...")
            
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if not success:
                return False
                
            self.audio_processor = AudioProcessor(self.encoder)
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )
            
            self.is_initialized = True
            print("Speaker diarization system initialized successfully!")
            return True
            
        except Exception as e:
            print(f"Initialization error: {e}")
            return False
    
    def update_settings(self, change_threshold, max_speakers):
        """Update diarization settings"""
        self.change_threshold = change_threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(change_threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
    
    def process_audio_segment(self, audio_data: np.ndarray, text: str) -> Tuple[int, str]:
        """Process an audio segment and return speaker ID and formatted text"""
        if not self.is_initialized:
            return 0, text
            
        try:
            # Extract speaker embedding
            embedding = self.audio_processor.extract_embedding(audio_data)
            
            # Detect speaker
            speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
            
            # Format text with speaker label
            speaker_label = SPEAKER_LABELS[speaker_id]
            formatted_text = f"{speaker_label}: {text}"
            
            return speaker_id, formatted_text
            
        except Exception as e:
            print(f"Error processing audio segment: {e}")
            return 0, f"Speaker 1: {text}"
    
    def get_transcript_history(self):
        """Get the formatted transcript history"""
        return "\n".join(self.transcript_history)
    
    def add_to_transcript(self, formatted_text: str):
        """Add formatted text to transcript history"""
        self.transcript_history.append(formatted_text)
        
        # Keep only last 50 entries to prevent memory issues
        if len(self.transcript_history) > 50:
            self.transcript_history = self.transcript_history[-50:]
    
    def clear_transcript(self):
        """Clear transcript history and reset speaker detector"""
        self.transcript_history = []
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )


# Global instance
diarization_system = RealTimeSpeakerDiarization()


async def initialize_system():
    """Initialize the diarization system"""
    success = await diarization_system.initialize()
    if success:
        return "βœ… Speaker diarization system initialized successfully!"
    else:
        return "❌ Failed to initialize speaker diarization system. Please check your setup."


def process_audio_with_transcript(audio_data, sample_rate, transcription_text, change_threshold, max_speakers):
    """Process audio with transcription for speaker diarization"""
    if not diarization_system.is_initialized:
        return "Please initialize the system first.", ""
    
    if audio_data is None or transcription_text.strip() == "":
        return diarization_system.get_transcript_history(), ""
    
    try:
        # Update settings
        diarization_system.update_settings(change_threshold, max_speakers)
        
        # Convert audio to the right format
        if len(audio_data.shape) > 1:
            audio_data = audio_data.mean(axis=1)  # Convert to mono
        
        # Resample if needed
        if sample_rate != SAMPLE_RATE:
            audio_data = torchaudio.functional.resample(
                torch.tensor(audio_data), sample_rate, SAMPLE_RATE
            ).numpy()
        
        # Process the audio segment
        speaker_id, formatted_text = diarization_system.process_audio_segment(audio_data, transcription_text)
        
        # Add to transcript
        diarization_system.add_to_transcript(formatted_text)
        
        # Return updated transcript and current speaker info
        transcript = diarization_system.get_transcript_history()
        current_speaker_info = f"Current Speaker: {SPEAKER_LABELS[speaker_id]}"
        
        return transcript, current_speaker_info
        
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        return diarization_system.get_transcript_history(), error_msg


def clear_conversation():
    """Clear the conversation transcript"""
    diarization_system.clear_transcript()
    return "", "Conversation cleared."


def create_gradio_interface():
    """Create and return the Gradio interface"""
    with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸŽ™οΈ Real-time Speaker Diarization with ASR")
        gr.Markdown("Upload audio with transcription to perform real-time speaker diarization.")
        
        # Initialization section
        with gr.Row():
            init_btn = gr.Button("πŸš€ Initialize System", variant="primary")
            init_status = gr.Textbox(label="Initialization Status", interactive=False)
        
        # Settings section
        with gr.Row():
            with gr.Column():
                change_threshold = gr.Slider(
                    minimum=0.1, 
                    maximum=0.9, 
                    value=DEFAULT_CHANGE_THRESHOLD,
                    step=0.05,
                    label="Speaker Change Threshold",
                    info="Lower values = more sensitive to speaker changes"
                )
            with gr.Column():
                max_speakers = gr.Slider(
                    minimum=2,
                    maximum=ABSOLUTE_MAX_SPEAKERS,
                    value=DEFAULT_MAX_SPEAKERS,
                    step=1,
                    label="Maximum Number of Speakers",
                    info="Maximum number of speakers to detect"
                )
        
        # Audio input and transcription
        with gr.Row():
            with gr.Column():
                audio_input = gr.Audio(
                    label="Audio Input",
                    type="numpy",
                    format="wav"
                )
                transcription_input = gr.Textbox(
                    label="Transcription Text",
                    placeholder="Enter the transcription of the audio...",
                    lines=3
                )
                process_btn = gr.Button("🎯 Process Audio", variant="secondary")
            
            with gr.Column():
                current_speaker = gr.Textbox(
                    label="Current Speaker",
                    interactive=False
                )
                clear_btn = gr.Button("πŸ—‘οΈ Clear Conversation", variant="stop")
        
        # Output section
        transcript_output = gr.Textbox(
            label="Live Transcript with Speaker Labels",
            lines=15,
            max_lines=20,
            interactive=False,
            placeholder="Processed transcript will appear here..."
        )
        
        # Event handlers
        init_btn.click(
            fn=initialize_system,
            outputs=[init_status]
        )
        
        process_btn.click(
            fn=process_audio_with_transcript,
            inputs=[
                audio_input,
                gr.Number(value=SAMPLE_RATE, visible=False),  # Hidden sample rate
                transcription_input,
                change_threshold,
                max_speakers
            ],
            outputs=[transcript_output, current_speaker]
        )
        
        clear_btn.click(
            fn=clear_conversation,
            outputs=[transcript_output, current_speaker]
        )
        
        # Auto-process when audio and transcription are provided
        audio_input.change(
            fn=process_audio_with_transcript,
            inputs=[
                audio_input,
                gr.Number(value=SAMPLE_RATE, visible=False),
                transcription_input,
                change_threshold,
                max_speakers
            ],
            outputs=[transcript_output, current_speaker]
        )
        
        # Instructions
        gr.Markdown("""
        ## Instructions:
        1. **Initialize**: Click "Initialize System" to load the speaker diarization models
        2. **Upload Audio**: Upload an audio file (WAV format recommended)
        3. **Add Transcription**: Enter the transcription text for the audio
        4. **Adjust Settings**: 
           - **Speaker Change Threshold**: Lower values detect speaker changes more easily
           - **Max Speakers**: Set the maximum number of speakers you expect
        5. **Process**: Click "Process Audio" or the system will auto-process
        6. **View Results**: See the transcript with speaker labels (Speaker 1, Speaker 2, etc.)
        
        ## Tips:
        - For similar-sounding speakers, increase the threshold (0.6-0.8)
        - For different-sounding speakers, lower threshold works better (0.3-0.5)
        - The system maintains speaker consistency across the conversation
        - Use "Clear Conversation" to reset the speaker memory
        """)
    
    return demo


if __name__ == "__main__":
    # Create and launch the Gradio interface
    demo = create_gradio_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )