Spaces:
Sleeping
Sleeping
File size: 19,578 Bytes
d65b6e8 66992f6 640dd0e b9dea2c af81629 66992f6 b9dea2c c263c26 b9dea2c c263c26 b9dea2c 640dd0e af81629 640dd0e af81629 640dd0e af81629 b9dea2c af81629 640dd0e 66992f6 640dd0e af81629 640dd0e b9dea2c 640dd0e af81629 640dd0e 66992f6 640dd0e af81629 640dd0e 66992f6 af81629 640dd0e b9dea2c 640dd0e af81629 b9dea2c 640dd0e af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 b9dea2c 117eca9 b9dea2c 117eca9 b9dea2c 117eca9 b9dea2c 117eca9 b9dea2c 25dcfd9 b9dea2c 25dcfd9 b9dea2c 25dcfd9 b9dea2c 640dd0e b9dea2c 117eca9 b9dea2c 66992f6 640dd0e b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 117eca9 b9dea2c 25dcfd9 b9dea2c 66992f6 b9dea2c c263c26 b9dea2c c263c26 b9dea2c 88f78ff b9dea2c 66992f6 b9dea2c 25dcfd9 b9dea2c af81629 b9dea2c c263c26 b9dea2c 640dd0e af81629 b9dea2c 66992f6 b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 25dcfd9 af81629 b9dea2c af81629 b9dea2c 25dcfd9 b9dea2c 66992f6 b9dea2c 66992f6 b9dea2c 640dd0e b9dea2c 66992f6 b9dea2c af81629 640dd0e b9dea2c af81629 66992f6 b9dea2c 25dcfd9 b9dea2c 25dcfd9 b9dea2c 640dd0e b9dea2c 640dd0e b9dea2c 66992f6 af81629 b9dea2c 640dd0e b9dea2c 25dcfd9 b9dea2c 66992f6 b9dea2c 66992f6 af81629 66992f6 b9dea2c 66992f6 25dcfd9 b9dea2c 66992f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import gradio as gr
import numpy as np
import torch
import torchaudio
import time
import os
import urllib.request
from scipy.spatial.distance import cosine
import threading
import queue
from collections import deque
import asyncio
from typing import Generator, Tuple, List, Optional
# Configuration parameters (keeping original models)
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
SAMPLE_RATE = 16000
# Speaker labels
SPEAKER_LABELS = [f"Speaker {i+1}" for i in range(ABSOLUTE_MAX_SPEAKERS)]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector that supports configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_data):
try:
# Ensure audio is float32 and normalized
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
# Normalize if needed
if np.abs(audio_data).max() > 1.0:
audio_data = audio_data / np.abs(audio_data).max()
# Extract embedding using the loaded encoder
embedding = self.encoder.embed_utterance(audio_data)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class RealTimeSpeakerDiarization:
"""Main class for real-time speaker diarization"""
def __init__(self, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.change_threshold = change_threshold
self.max_speakers = max_speakers
self.transcript_history = []
self.is_initialized = False
# Threading components
self.audio_queue = queue.Queue()
self.processing_thread = None
self.running = False
async def initialize(self):
"""Initialize the speaker diarization system"""
if self.is_initialized:
return True
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Initializing ECAPA-TDNN model on {device_str}...")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if not success:
return False
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
self.is_initialized = True
print("Speaker diarization system initialized successfully!")
return True
except Exception as e:
print(f"Initialization error: {e}")
return False
def update_settings(self, change_threshold, max_speakers):
"""Update diarization settings"""
self.change_threshold = change_threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(change_threshold)
self.speaker_detector.set_max_speakers(max_speakers)
def process_audio_segment(self, audio_data: np.ndarray, text: str) -> Tuple[int, str]:
"""Process an audio segment and return speaker ID and formatted text"""
if not self.is_initialized:
return 0, text
try:
# Extract speaker embedding
embedding = self.audio_processor.extract_embedding(audio_data)
# Detect speaker
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
# Format text with speaker label
speaker_label = SPEAKER_LABELS[speaker_id]
formatted_text = f"{speaker_label}: {text}"
return speaker_id, formatted_text
except Exception as e:
print(f"Error processing audio segment: {e}")
return 0, f"Speaker 1: {text}"
def get_transcript_history(self):
"""Get the formatted transcript history"""
return "\n".join(self.transcript_history)
def add_to_transcript(self, formatted_text: str):
"""Add formatted text to transcript history"""
self.transcript_history.append(formatted_text)
# Keep only last 50 entries to prevent memory issues
if len(self.transcript_history) > 50:
self.transcript_history = self.transcript_history[-50:]
def clear_transcript(self):
"""Clear transcript history and reset speaker detector"""
self.transcript_history = []
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Global instance
diarization_system = RealTimeSpeakerDiarization()
async def initialize_system():
"""Initialize the diarization system"""
success = await diarization_system.initialize()
if success:
return "β
Speaker diarization system initialized successfully!"
else:
return "β Failed to initialize speaker diarization system. Please check your setup."
def process_audio_with_transcript(audio_data, sample_rate, transcription_text, change_threshold, max_speakers):
"""Process audio with transcription for speaker diarization"""
if not diarization_system.is_initialized:
return "Please initialize the system first.", ""
if audio_data is None or transcription_text.strip() == "":
return diarization_system.get_transcript_history(), ""
try:
# Update settings
diarization_system.update_settings(change_threshold, max_speakers)
# Convert audio to the right format
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1) # Convert to mono
# Resample if needed
if sample_rate != SAMPLE_RATE:
audio_data = torchaudio.functional.resample(
torch.tensor(audio_data), sample_rate, SAMPLE_RATE
).numpy()
# Process the audio segment
speaker_id, formatted_text = diarization_system.process_audio_segment(audio_data, transcription_text)
# Add to transcript
diarization_system.add_to_transcript(formatted_text)
# Return updated transcript and current speaker info
transcript = diarization_system.get_transcript_history()
current_speaker_info = f"Current Speaker: {SPEAKER_LABELS[speaker_id]}"
return transcript, current_speaker_info
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
return diarization_system.get_transcript_history(), error_msg
def clear_conversation():
"""Clear the conversation transcript"""
diarization_system.clear_transcript()
return "", "Conversation cleared."
def create_gradio_interface():
"""Create and return the Gradio interface"""
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ποΈ Real-time Speaker Diarization with ASR")
gr.Markdown("Upload audio with transcription to perform real-time speaker diarization.")
# Initialization section
with gr.Row():
init_btn = gr.Button("π Initialize System", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
# Settings section
with gr.Row():
with gr.Column():
change_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
value=DEFAULT_CHANGE_THRESHOLD,
step=0.05,
label="Speaker Change Threshold",
info="Lower values = more sensitive to speaker changes"
)
with gr.Column():
max_speakers = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
value=DEFAULT_MAX_SPEAKERS,
step=1,
label="Maximum Number of Speakers",
info="Maximum number of speakers to detect"
)
# Audio input and transcription
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="numpy",
format="wav"
)
transcription_input = gr.Textbox(
label="Transcription Text",
placeholder="Enter the transcription of the audio...",
lines=3
)
process_btn = gr.Button("π― Process Audio", variant="secondary")
with gr.Column():
current_speaker = gr.Textbox(
label="Current Speaker",
interactive=False
)
clear_btn = gr.Button("ποΈ Clear Conversation", variant="stop")
# Output section
transcript_output = gr.Textbox(
label="Live Transcript with Speaker Labels",
lines=15,
max_lines=20,
interactive=False,
placeholder="Processed transcript will appear here..."
)
# Event handlers
init_btn.click(
fn=initialize_system,
outputs=[init_status]
)
process_btn.click(
fn=process_audio_with_transcript,
inputs=[
audio_input,
gr.Number(value=SAMPLE_RATE, visible=False), # Hidden sample rate
transcription_input,
change_threshold,
max_speakers
],
outputs=[transcript_output, current_speaker]
)
clear_btn.click(
fn=clear_conversation,
outputs=[transcript_output, current_speaker]
)
# Auto-process when audio and transcription are provided
audio_input.change(
fn=process_audio_with_transcript,
inputs=[
audio_input,
gr.Number(value=SAMPLE_RATE, visible=False),
transcription_input,
change_threshold,
max_speakers
],
outputs=[transcript_output, current_speaker]
)
# Instructions
gr.Markdown("""
## Instructions:
1. **Initialize**: Click "Initialize System" to load the speaker diarization models
2. **Upload Audio**: Upload an audio file (WAV format recommended)
3. **Add Transcription**: Enter the transcription text for the audio
4. **Adjust Settings**:
- **Speaker Change Threshold**: Lower values detect speaker changes more easily
- **Max Speakers**: Set the maximum number of speakers you expect
5. **Process**: Click "Process Audio" or the system will auto-process
6. **View Results**: See the transcript with speaker labels (Speaker 1, Speaker 2, etc.)
## Tips:
- For similar-sounding speakers, increase the threshold (0.6-0.8)
- For different-sounding speakers, lower threshold works better (0.3-0.5)
- The system maintains speaker consistency across the conversation
- Use "Clear Conversation" to reset the speaker memory
""")
return demo
if __name__ == "__main__":
# Create and launch the Gradio interface
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
|