File size: 22,778 Bytes
d65b6e8
66992f6
640dd0e
b9dea2c
af81629
 
 
b9dea2c
fd289b1
 
 
c263c26
fd289b1
 
640dd0e
 
 
 
af81629
640dd0e
 
 
 
 
 
af81629
 
 
 
640dd0e
fd289b1
 
 
af81629
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
af81629
 
 
640dd0e
66992f6
 
640dd0e
 
 
 
 
 
fd289b1
 
 
 
 
 
 
 
 
 
 
af81629
640dd0e
 
 
 
fd289b1
 
640dd0e
 
 
 
 
 
 
 
 
b9dea2c
640dd0e
af81629
 
640dd0e
 
 
 
66992f6
 
640dd0e
af81629
640dd0e
66992f6
af81629
 
 
640dd0e
 
 
 
 
b9dea2c
640dd0e
 
 
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af81629
fd289b1
640dd0e
af81629
 
 
66992f6
af81629
 
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
 
 
 
 
 
66992f6
af81629
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
640dd0e
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
 
 
66992f6
 
117eca9
fd289b1
 
 
 
 
25dcfd9
 
fd289b1
 
 
640dd0e
 
 
fd289b1
 
 
 
 
 
 
 
 
b9dea2c
fd289b1
 
b9dea2c
fd289b1
 
66992f6
640dd0e
fd289b1
640dd0e
 
b9dea2c
640dd0e
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7208f76
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dea2c
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dea2c
fd289b1
b9dea2c
 
640dd0e
fd289b1
640dd0e
 
fd289b1
 
 
 
 
 
 
 
 
 
 
 
117eca9
fd289b1
 
 
 
 
 
 
 
 
25dcfd9
fd289b1
 
 
 
 
 
66992f6
fd289b1
 
 
7208f76
fd289b1
 
7208f76
fd289b1
 
 
 
 
 
7208f76
fd289b1
 
 
7208f76
fd289b1
 
 
 
 
 
 
c263c26
fd289b1
 
c263c26
fd289b1
7208f76
 
fd289b1
 
7208f76
fd289b1
 
7208f76
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
 
fd289b1
 
25dcfd9
fd289b1
 
 
 
c263c26
fd289b1
 
 
b9dea2c
 
fd289b1
 
 
 
 
 
640dd0e
 
 
 
 
 
af81629
 
 
fd289b1
66992f6
 
fd289b1
 
 
 
7208f76
fd289b1
 
7208f76
fd289b1
af81629
 
fd289b1
 
 
 
25dcfd9
 
fd289b1
 
 
 
 
 
b9dea2c
 
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9dea2c
fd289b1
 
640dd0e
b9dea2c
 
 
66992f6
fd289b1
 
b9dea2c
af81629
 
640dd0e
b9dea2c
fd289b1
b9dea2c
af81629
7208f76
fd289b1
 
 
 
 
 
 
 
 
640dd0e
fd289b1
7208f76
fd289b1
7208f76
fd289b1
 
66992f6
 
fd289b1
af81629
fd289b1
 
25dcfd9
 
fd289b1
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
fd289b1
66992f6
af81629
66992f6
fd289b1
 
 
66992f6
25dcfd9
fd289b1
66992f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import gradio as gr
import numpy as np
import torch
import torchaudio
import time
import os
import urllib.request
import queue
import threading
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder

# Configuration parameters (kept same as original)
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10

# Audio parameters
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1

# Speaker colors for HTML display
SPEAKER_COLORS = [
    "#FFFF00", "#FF0000", "#00FF00", "#00FFFF", "#FF00FF",
    "#0000FF", "#FF8000", "#00FF80", "#8000FF", "#FFFFFF"
]

SPEAKER_COLOR_NAMES = [
    "Yellow", "Red", "Green", "Cyan", "Magenta",
    "Blue", "Orange", "Spring Green", "Purple", "White"
]


class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def _download_model(self):
        """Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
        model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
        model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
        
        if not os.path.exists(model_path):
            print(f"Downloading ECAPA-TDNN model to {model_path}...")
            urllib.request.urlretrieve(model_url, model_path)
        
        return model_path
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            from speechbrain.pretrained import EncoderClassifier
            
            model_path = self._download_model()
            
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_int16):
        try:
            float_audio = audio_int16.astype(np.float32) / 32768.0
            
            if np.abs(float_audio).max() > 1.0:
                float_audio = float_audio / np.abs(float_audio).max()
            
            embedding = self.encoder.embed_utterance(float_audio)
            
            return embedding
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class SpeakerChangeDetector:
    """Speaker change detector with configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.last_similarity = 0.0
        self.active_speakers = set([0])
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        if new_max > self.max_speakers:
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            if similarity < self.change_threshold:
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                elif len(self.active_speakers) < self.max_speakers:
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        if is_speaker_change:
            self.last_change_time = current_time
        
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"


class RealtimeASRDiarization:
    """Main class for real-time ASR with speaker diarization"""
    def __init__(self):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.recorder = None
        self.is_recording = False
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.last_realtime_text = ""
        self.sentence_queue = queue.Queue()
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS
        
        # Initialize model
        self.initialize_model()
        
    def initialize_model(self):
        """Initialize the speaker encoder model"""
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device_str}")
            
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if success:
                print("ECAPA-TDNN model loaded successfully!")
                self.audio_processor = AudioProcessor(self.encoder)
                self.speaker_detector = SpeakerChangeDetector(
                    embedding_dim=self.encoder.embedding_dim,
                    change_threshold=self.change_threshold,
                    max_speakers=self.max_speakers
                )
                
                # Start sentence processing thread
                self.sentence_thread = threading.Thread(target=self.process_sentences, daemon=True)
                self.sentence_thread.start()
                
            else:
                print("Failed to load ECAPA-TDNN model")
                
        except Exception as e:
            print(f"Model initialization error: {e}")
    
    def process_sentences(self):
        """Process sentences in background thread"""
        while True:
            try:
                text, audio_bytes = self.sentence_queue.get(timeout=1)
                self.process_sentence(text, audio_bytes)
            except queue.Empty:
                continue
    
    def process_sentence(self, text, audio_bytes):
        """Process a sentence with speaker diarization"""
        if self.audio_processor is None or self.speaker_detector is None:
            return
            
        try:
            # Convert audio data to int16
            audio_int16 = np.int16(audio_bytes * 32767)
            
            # Extract speaker embedding
            speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
            
            # Store sentence and embedding
            self.full_sentences.append((text, speaker_embedding))
            
            # Fill in any missing speaker assignments
            while len(self.sentence_speakers) < len(self.full_sentences) - 1:
                self.sentence_speakers.append(0)
            
            # Detect speaker changes
            speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
            self.sentence_speakers.append(speaker_id)
            
            # Remove from pending
            if text in self.pending_sentences:
                self.pending_sentences.remove(text)
                
        except Exception as e:
            print(f"Error processing sentence: {e}")
    
    def setup_recorder(self):
        """Setup the audio recorder"""
        try:
            recorder_config = {
                'spinner': False,
                'use_microphone': False,
                'model': FINAL_TRANSCRIPTION_MODEL,
                'language': TRANSCRIPTION_LANGUAGE,
                'silero_sensitivity': SILERO_SENSITIVITY,
                'webrtc_sensitivity': WEBRTC_SENSITIVITY,
                'post_speech_silence_duration': SILENCE_THRESHS[1],
                'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
                'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
                'min_gap_between_recordings': 0,
                'enable_realtime_transcription': True,
                'realtime_processing_pause': 0,
                'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
                'on_realtime_transcription_update': self.live_text_detected,
                'beam_size': FINAL_BEAM_SIZE,
                'beam_size_realtime': REALTIME_BEAM_SIZE,
                'buffer_size': BUFFER_SIZE,
                'sample_rate': SAMPLE_RATE,
            }
            
            self.recorder = AudioToTextRecorder(**recorder_config)
            return True
            
        except Exception as e:
            print(f"Error setting up recorder: {e}")
            return False
    
    def live_text_detected(self, text):
        """Handle live text detection"""
        text = text.strip()
        if not text:
            return
            
        sentence_delimiters = '.?!。'
        prob_sentence_end = (
            len(self.last_realtime_text) > 0
            and text[-1] in sentence_delimiters
            and self.last_realtime_text[-1] in sentence_delimiters
        )
        
        self.last_realtime_text = text
        
        if prob_sentence_end:
            if FAST_SENTENCE_END:
                self.recorder.stop()
            else:
                self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
        else:
            self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
    
    def process_audio_chunk(self, audio_chunk):
        """Process incoming audio chunk from FastRTC"""
        if self.recorder is None:
            if not self.setup_recorder():
                return "Failed to setup recorder"
        
        try:
            # Convert audio to the format expected by the recorder
            if isinstance(audio_chunk, tuple):
                sample_rate, audio_data = audio_chunk
            else:
                audio_data = audio_chunk
                sample_rate = SAMPLE_RATE
            
            # Ensure audio is in the right format
            if audio_data.dtype != np.int16:
                if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
                    audio_data = (audio_data * 32767).astype(np.int16)
                else:
                    audio_data = audio_data.astype(np.int16)
            
            # Convert to bytes and feed to recorder
            audio_bytes = audio_data.tobytes()
            self.recorder.feed_audio(audio_bytes)
            
            # Process final text if available
            def process_final_text(text):
                text = text.strip()
                if text:
                    self.pending_sentences.append(text)
                    audio_bytes = self.recorder.last_transcription_bytes
                    self.sentence_queue.put((text, audio_bytes))
            
            # Get transcription
            self.recorder.text(process_final_text)
            
            return self.get_formatted_transcript()
            
        except Exception as e:
            print(f"Error processing audio: {e}")
            return f"Error: {e}"
    
    def get_formatted_transcript(self):
        """Get formatted transcript with speaker labels"""
        try:
            transcript_parts = []
            
            # Add completed sentences with speaker labels
            for i, (sentence_text, _) in enumerate(self.full_sentences):
                if i < len(self.sentence_speakers):
                    speaker_id = self.sentence_speakers[i]
                    speaker_label = f"Speaker {speaker_id + 1}"
                    transcript_parts.append(f"{speaker_label}: {sentence_text}")
            
            # Add pending sentences
            for pending in self.pending_sentences:
                transcript_parts.append(f"[Processing]: {pending}")
            
            # Add current live text
            if self.last_realtime_text:
                transcript_parts.append(f"[Live]: {self.last_realtime_text}")
            
            return "\n".join(transcript_parts)
            
        except Exception as e:
            print(f"Error formatting transcript: {e}")
            return "Error formatting transcript"
    
    def update_settings(self, change_threshold, max_speakers):
        """Update diarization settings"""
        self.change_threshold = change_threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(change_threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
    
    def clear_transcript(self):
        """Clear all transcript data"""
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.last_realtime_text = ""
        
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )


# Global instance
asr_diarization = RealtimeASRDiarization()


def process_audio_stream(audio_chunk, change_threshold, max_speakers):
    """Process audio stream and return transcript"""
    # Update settings if changed
    asr_diarization.update_settings(change_threshold, max_speakers)
    
    # Process audio
    transcript = asr_diarization.process_audio_chunk(audio_chunk)
    
    return transcript


def clear_transcript():
    """Clear the transcript"""
    asr_diarization.clear_transcript()
    return "Transcript cleared. Ready for new input..."


def create_interface():
    """Create Gradio interface with FastRTC"""
    
    with gr.Blocks(title="Real-time Speaker Diarization") as iface:
        gr.Markdown("# Real-time ASR with Speaker Diarization")
        gr.Markdown("Speak into your microphone to see real-time transcription with speaker labels!")
        
        with gr.Row():
            with gr.Column(scale=3):
                # Audio input with FastRTC
                audio_input = gr.Audio(
                    sources=["microphone"],
                    streaming=True,
                    label="Microphone Input"
                )
                
                # Transcript output
                transcript_output = gr.Textbox(
                    label="Live Transcript with Speaker Labels",
                    lines=15,
                    max_lines=20,
                    value="Ready to start transcription...",
                    interactive=False
                )
                
            with gr.Column(scale=1):
                gr.Markdown("### Settings")
                
                # Speaker change threshold
                change_threshold = gr.Slider(
                    minimum=0.1,
                    maximum=0.95,
                    value=DEFAULT_CHANGE_THRESHOLD,
                    step=0.05,
                    label="Speaker Change Threshold",
                    info="Lower values = more sensitive to speaker changes"
                )
                
                # Max speakers
                max_speakers = gr.Slider(
                    minimum=2,
                    maximum=ABSOLUTE_MAX_SPEAKERS,
                    value=DEFAULT_MAX_SPEAKERS,
                    step=1,
                    label="Maximum Speakers",
                    info="Maximum number of speakers to detect"
                )
                
                # Clear button
                clear_btn = gr.Button("Clear Transcript", variant="secondary")
                
                gr.Markdown("### Speaker Colors")
                color_info = "\\n".join([
                    f"Speaker {i+1}: {SPEAKER_COLOR_NAMES[i]}" 
                    for i in range(min(DEFAULT_MAX_SPEAKERS, len(SPEAKER_COLOR_NAMES)))
                ])
                gr.Markdown(color_info)
        
        # Set up streaming
        audio_input.stream(
            fn=process_audio_stream,
            inputs=[audio_input, change_threshold, max_speakers],
            outputs=[transcript_output],
            show_progress=False
        )
        
        # Clear button functionality
        clear_btn.click(
            fn=clear_transcript,
            outputs=[transcript_output]
        )
        
        gr.Markdown("""
        ### Instructions:
        1. Allow microphone access when prompted
        2. Start speaking - transcription will appear in real-time
        3. Different speakers will be automatically detected and labeled
        4. Adjust the threshold if speaker changes aren't detected properly
        5. Use the clear button to reset the transcript
        
        ### Notes:
        - The system works best with clear audio and distinct speakers
        - It may take a moment to load the speaker recognition model on first use
        - Lower threshold values make the system more sensitive to speaker changes
        """)
    
    return iface


if __name__ == "__main__":
    # Create and launch the interface
    iface = create_interface()
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )