Spaces:
Sleeping
Sleeping
File size: 22,778 Bytes
d65b6e8 66992f6 640dd0e b9dea2c af81629 b9dea2c fd289b1 c263c26 fd289b1 640dd0e af81629 640dd0e af81629 640dd0e fd289b1 af81629 fd289b1 af81629 640dd0e 66992f6 640dd0e fd289b1 af81629 640dd0e fd289b1 640dd0e b9dea2c 640dd0e af81629 640dd0e 66992f6 640dd0e af81629 640dd0e 66992f6 af81629 640dd0e b9dea2c 640dd0e fd289b1 af81629 fd289b1 640dd0e af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 117eca9 fd289b1 25dcfd9 fd289b1 640dd0e fd289b1 b9dea2c fd289b1 b9dea2c fd289b1 66992f6 640dd0e fd289b1 640dd0e b9dea2c 640dd0e fd289b1 7208f76 fd289b1 b9dea2c fd289b1 b9dea2c fd289b1 b9dea2c 640dd0e fd289b1 640dd0e fd289b1 117eca9 fd289b1 25dcfd9 fd289b1 66992f6 fd289b1 7208f76 fd289b1 7208f76 fd289b1 7208f76 fd289b1 7208f76 fd289b1 c263c26 fd289b1 c263c26 fd289b1 7208f76 fd289b1 7208f76 fd289b1 7208f76 fd289b1 66992f6 fd289b1 25dcfd9 fd289b1 c263c26 fd289b1 b9dea2c fd289b1 640dd0e af81629 fd289b1 66992f6 fd289b1 7208f76 fd289b1 7208f76 fd289b1 af81629 fd289b1 25dcfd9 fd289b1 b9dea2c fd289b1 b9dea2c fd289b1 640dd0e b9dea2c 66992f6 fd289b1 b9dea2c af81629 640dd0e b9dea2c fd289b1 b9dea2c af81629 7208f76 fd289b1 640dd0e fd289b1 7208f76 fd289b1 7208f76 fd289b1 66992f6 fd289b1 af81629 fd289b1 25dcfd9 fd289b1 66992f6 fd289b1 66992f6 af81629 66992f6 fd289b1 66992f6 25dcfd9 fd289b1 66992f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import gradio as gr
import numpy as np
import torch
import torchaudio
import time
import os
import urllib.request
import queue
import threading
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
# Configuration parameters (kept same as original)
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
# Audio parameters
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors for HTML display
SPEAKER_COLORS = [
"#FFFF00", "#FF0000", "#00FF00", "#00FFFF", "#FF00FF",
"#0000FF", "#FF8000", "#00FF80", "#8000FF", "#FFFFFF"
]
SPEAKER_COLOR_NAMES = [
"Yellow", "Red", "Green", "Cyan", "Magenta",
"Blue", "Orange", "Spring Green", "Purple", "White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
model_path = self._download_model()
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_int16):
try:
float_audio = audio_int16.astype(np.float32) / 32768.0
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
embedding = self.encoder.embed_utterance(float_audio)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector with configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
class RealtimeASRDiarization:
"""Main class for real-time ASR with speaker diarization"""
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None
self.is_recording = False
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.last_realtime_text = ""
self.sentence_queue = queue.Queue()
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
# Initialize model
self.initialize_model()
def initialize_model(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
print("ECAPA-TDNN model loaded successfully!")
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Start sentence processing thread
self.sentence_thread = threading.Thread(target=self.process_sentences, daemon=True)
self.sentence_thread.start()
else:
print("Failed to load ECAPA-TDNN model")
except Exception as e:
print(f"Model initialization error: {e}")
def process_sentences(self):
"""Process sentences in background thread"""
while True:
try:
text, audio_bytes = self.sentence_queue.get(timeout=1)
self.process_sentence(text, audio_bytes)
except queue.Empty:
continue
def process_sentence(self, text, audio_bytes):
"""Process a sentence with speaker diarization"""
if self.audio_processor is None or self.speaker_detector is None:
return
try:
# Convert audio data to int16
audio_int16 = np.int16(audio_bytes * 32767)
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
# Store sentence and embedding
self.full_sentences.append((text, speaker_embedding))
# Fill in any missing speaker assignments
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
self.sentence_speakers.append(0)
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
# Remove from pending
if text in self.pending_sentences:
self.pending_sentences.remove(text)
except Exception as e:
print(f"Error processing sentence: {e}")
def setup_recorder(self):
"""Setup the audio recorder"""
try:
recorder_config = {
'spinner': False,
'use_microphone': False,
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'buffer_size': BUFFER_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
return True
except Exception as e:
print(f"Error setting up recorder: {e}")
return False
def live_text_detected(self, text):
"""Handle live text detection"""
text = text.strip()
if not text:
return
sentence_delimiters = '.?!。'
prob_sentence_end = (
len(self.last_realtime_text) > 0
and text[-1] in sentence_delimiters
and self.last_realtime_text[-1] in sentence_delimiters
)
self.last_realtime_text = text
if prob_sentence_end:
if FAST_SENTENCE_END:
self.recorder.stop()
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
def process_audio_chunk(self, audio_chunk):
"""Process incoming audio chunk from FastRTC"""
if self.recorder is None:
if not self.setup_recorder():
return "Failed to setup recorder"
try:
# Convert audio to the format expected by the recorder
if isinstance(audio_chunk, tuple):
sample_rate, audio_data = audio_chunk
else:
audio_data = audio_chunk
sample_rate = SAMPLE_RATE
# Ensure audio is in the right format
if audio_data.dtype != np.int16:
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
audio_data = (audio_data * 32767).astype(np.int16)
else:
audio_data = audio_data.astype(np.int16)
# Convert to bytes and feed to recorder
audio_bytes = audio_data.tobytes()
self.recorder.feed_audio(audio_bytes)
# Process final text if available
def process_final_text(text):
text = text.strip()
if text:
self.pending_sentences.append(text)
audio_bytes = self.recorder.last_transcription_bytes
self.sentence_queue.put((text, audio_bytes))
# Get transcription
self.recorder.text(process_final_text)
return self.get_formatted_transcript()
except Exception as e:
print(f"Error processing audio: {e}")
return f"Error: {e}"
def get_formatted_transcript(self):
"""Get formatted transcript with speaker labels"""
try:
transcript_parts = []
# Add completed sentences with speaker labels
for i, (sentence_text, _) in enumerate(self.full_sentences):
if i < len(self.sentence_speakers):
speaker_id = self.sentence_speakers[i]
speaker_label = f"Speaker {speaker_id + 1}"
transcript_parts.append(f"{speaker_label}: {sentence_text}")
# Add pending sentences
for pending in self.pending_sentences:
transcript_parts.append(f"[Processing]: {pending}")
# Add current live text
if self.last_realtime_text:
transcript_parts.append(f"[Live]: {self.last_realtime_text}")
return "\n".join(transcript_parts)
except Exception as e:
print(f"Error formatting transcript: {e}")
return "Error formatting transcript"
def update_settings(self, change_threshold, max_speakers):
"""Update diarization settings"""
self.change_threshold = change_threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(change_threshold)
self.speaker_detector.set_max_speakers(max_speakers)
def clear_transcript(self):
"""Clear all transcript data"""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.last_realtime_text = ""
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Global instance
asr_diarization = RealtimeASRDiarization()
def process_audio_stream(audio_chunk, change_threshold, max_speakers):
"""Process audio stream and return transcript"""
# Update settings if changed
asr_diarization.update_settings(change_threshold, max_speakers)
# Process audio
transcript = asr_diarization.process_audio_chunk(audio_chunk)
return transcript
def clear_transcript():
"""Clear the transcript"""
asr_diarization.clear_transcript()
return "Transcript cleared. Ready for new input..."
def create_interface():
"""Create Gradio interface with FastRTC"""
with gr.Blocks(title="Real-time Speaker Diarization") as iface:
gr.Markdown("# Real-time ASR with Speaker Diarization")
gr.Markdown("Speak into your microphone to see real-time transcription with speaker labels!")
with gr.Row():
with gr.Column(scale=3):
# Audio input with FastRTC
audio_input = gr.Audio(
sources=["microphone"],
streaming=True,
label="Microphone Input"
)
# Transcript output
transcript_output = gr.Textbox(
label="Live Transcript with Speaker Labels",
lines=15,
max_lines=20,
value="Ready to start transcription...",
interactive=False
)
with gr.Column(scale=1):
gr.Markdown("### Settings")
# Speaker change threshold
change_threshold = gr.Slider(
minimum=0.1,
maximum=0.95,
value=DEFAULT_CHANGE_THRESHOLD,
step=0.05,
label="Speaker Change Threshold",
info="Lower values = more sensitive to speaker changes"
)
# Max speakers
max_speakers = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
value=DEFAULT_MAX_SPEAKERS,
step=1,
label="Maximum Speakers",
info="Maximum number of speakers to detect"
)
# Clear button
clear_btn = gr.Button("Clear Transcript", variant="secondary")
gr.Markdown("### Speaker Colors")
color_info = "\\n".join([
f"Speaker {i+1}: {SPEAKER_COLOR_NAMES[i]}"
for i in range(min(DEFAULT_MAX_SPEAKERS, len(SPEAKER_COLOR_NAMES)))
])
gr.Markdown(color_info)
# Set up streaming
audio_input.stream(
fn=process_audio_stream,
inputs=[audio_input, change_threshold, max_speakers],
outputs=[transcript_output],
show_progress=False
)
# Clear button functionality
clear_btn.click(
fn=clear_transcript,
outputs=[transcript_output]
)
gr.Markdown("""
### Instructions:
1. Allow microphone access when prompted
2. Start speaking - transcription will appear in real-time
3. Different speakers will be automatically detected and labeled
4. Adjust the threshold if speaker changes aren't detected properly
5. Use the clear button to reset the transcript
### Notes:
- The system works best with clear audio and distinct speakers
- It may take a moment to load the speaker recognition model on first use
- Lower threshold values make the system more sensitive to speaker changes
""")
return iface
if __name__ == "__main__":
# Create and launch the interface
iface = create_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
|