Saiyaswanth007's picture
Fixing Real-time
fd289b1
raw
history blame
22.8 kB
import gradio as gr
import numpy as np
import torch
import torchaudio
import time
import os
import urllib.request
import queue
import threading
from scipy.spatial.distance import cosine
from RealtimeSTT import AudioToTextRecorder
# Configuration parameters (kept same as original)
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
# Audio parameters
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors for HTML display
SPEAKER_COLORS = [
"#FFFF00", "#FF0000", "#00FF00", "#00FFFF", "#FF00FF",
"#0000FF", "#FF8000", "#00FF80", "#8000FF", "#FFFFFF"
]
SPEAKER_COLOR_NAMES = [
"Yellow", "Red", "Green", "Cyan", "Magenta",
"Blue", "Orange", "Spring Green", "Purple", "White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
model_path = self._download_model()
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_int16):
try:
float_audio = audio_int16.astype(np.float32) / 32768.0
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
embedding = self.encoder.embed_utterance(float_audio)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector with configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
class RealtimeASRDiarization:
"""Main class for real-time ASR with speaker diarization"""
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None
self.is_recording = False
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.last_realtime_text = ""
self.sentence_queue = queue.Queue()
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
# Initialize model
self.initialize_model()
def initialize_model(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
print("ECAPA-TDNN model loaded successfully!")
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Start sentence processing thread
self.sentence_thread = threading.Thread(target=self.process_sentences, daemon=True)
self.sentence_thread.start()
else:
print("Failed to load ECAPA-TDNN model")
except Exception as e:
print(f"Model initialization error: {e}")
def process_sentences(self):
"""Process sentences in background thread"""
while True:
try:
text, audio_bytes = self.sentence_queue.get(timeout=1)
self.process_sentence(text, audio_bytes)
except queue.Empty:
continue
def process_sentence(self, text, audio_bytes):
"""Process a sentence with speaker diarization"""
if self.audio_processor is None or self.speaker_detector is None:
return
try:
# Convert audio data to int16
audio_int16 = np.int16(audio_bytes * 32767)
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
# Store sentence and embedding
self.full_sentences.append((text, speaker_embedding))
# Fill in any missing speaker assignments
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
self.sentence_speakers.append(0)
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
# Remove from pending
if text in self.pending_sentences:
self.pending_sentences.remove(text)
except Exception as e:
print(f"Error processing sentence: {e}")
def setup_recorder(self):
"""Setup the audio recorder"""
try:
recorder_config = {
'spinner': False,
'use_microphone': False,
'model': FINAL_TRANSCRIPTION_MODEL,
'language': TRANSCRIPTION_LANGUAGE,
'silero_sensitivity': SILERO_SENSITIVITY,
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
'post_speech_silence_duration': SILENCE_THRESHS[1],
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
'min_gap_between_recordings': 0,
'enable_realtime_transcription': True,
'realtime_processing_pause': 0,
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
'on_realtime_transcription_update': self.live_text_detected,
'beam_size': FINAL_BEAM_SIZE,
'beam_size_realtime': REALTIME_BEAM_SIZE,
'buffer_size': BUFFER_SIZE,
'sample_rate': SAMPLE_RATE,
}
self.recorder = AudioToTextRecorder(**recorder_config)
return True
except Exception as e:
print(f"Error setting up recorder: {e}")
return False
def live_text_detected(self, text):
"""Handle live text detection"""
text = text.strip()
if not text:
return
sentence_delimiters = '.?!。'
prob_sentence_end = (
len(self.last_realtime_text) > 0
and text[-1] in sentence_delimiters
and self.last_realtime_text[-1] in sentence_delimiters
)
self.last_realtime_text = text
if prob_sentence_end:
if FAST_SENTENCE_END:
self.recorder.stop()
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
else:
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
def process_audio_chunk(self, audio_chunk):
"""Process incoming audio chunk from FastRTC"""
if self.recorder is None:
if not self.setup_recorder():
return "Failed to setup recorder"
try:
# Convert audio to the format expected by the recorder
if isinstance(audio_chunk, tuple):
sample_rate, audio_data = audio_chunk
else:
audio_data = audio_chunk
sample_rate = SAMPLE_RATE
# Ensure audio is in the right format
if audio_data.dtype != np.int16:
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
audio_data = (audio_data * 32767).astype(np.int16)
else:
audio_data = audio_data.astype(np.int16)
# Convert to bytes and feed to recorder
audio_bytes = audio_data.tobytes()
self.recorder.feed_audio(audio_bytes)
# Process final text if available
def process_final_text(text):
text = text.strip()
if text:
self.pending_sentences.append(text)
audio_bytes = self.recorder.last_transcription_bytes
self.sentence_queue.put((text, audio_bytes))
# Get transcription
self.recorder.text(process_final_text)
return self.get_formatted_transcript()
except Exception as e:
print(f"Error processing audio: {e}")
return f"Error: {e}"
def get_formatted_transcript(self):
"""Get formatted transcript with speaker labels"""
try:
transcript_parts = []
# Add completed sentences with speaker labels
for i, (sentence_text, _) in enumerate(self.full_sentences):
if i < len(self.sentence_speakers):
speaker_id = self.sentence_speakers[i]
speaker_label = f"Speaker {speaker_id + 1}"
transcript_parts.append(f"{speaker_label}: {sentence_text}")
# Add pending sentences
for pending in self.pending_sentences:
transcript_parts.append(f"[Processing]: {pending}")
# Add current live text
if self.last_realtime_text:
transcript_parts.append(f"[Live]: {self.last_realtime_text}")
return "\n".join(transcript_parts)
except Exception as e:
print(f"Error formatting transcript: {e}")
return "Error formatting transcript"
def update_settings(self, change_threshold, max_speakers):
"""Update diarization settings"""
self.change_threshold = change_threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(change_threshold)
self.speaker_detector.set_max_speakers(max_speakers)
def clear_transcript(self):
"""Clear all transcript data"""
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.last_realtime_text = ""
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Global instance
asr_diarization = RealtimeASRDiarization()
def process_audio_stream(audio_chunk, change_threshold, max_speakers):
"""Process audio stream and return transcript"""
# Update settings if changed
asr_diarization.update_settings(change_threshold, max_speakers)
# Process audio
transcript = asr_diarization.process_audio_chunk(audio_chunk)
return transcript
def clear_transcript():
"""Clear the transcript"""
asr_diarization.clear_transcript()
return "Transcript cleared. Ready for new input..."
def create_interface():
"""Create Gradio interface with FastRTC"""
with gr.Blocks(title="Real-time Speaker Diarization") as iface:
gr.Markdown("# Real-time ASR with Speaker Diarization")
gr.Markdown("Speak into your microphone to see real-time transcription with speaker labels!")
with gr.Row():
with gr.Column(scale=3):
# Audio input with FastRTC
audio_input = gr.Audio(
sources=["microphone"],
streaming=True,
label="Microphone Input"
)
# Transcript output
transcript_output = gr.Textbox(
label="Live Transcript with Speaker Labels",
lines=15,
max_lines=20,
value="Ready to start transcription...",
interactive=False
)
with gr.Column(scale=1):
gr.Markdown("### Settings")
# Speaker change threshold
change_threshold = gr.Slider(
minimum=0.1,
maximum=0.95,
value=DEFAULT_CHANGE_THRESHOLD,
step=0.05,
label="Speaker Change Threshold",
info="Lower values = more sensitive to speaker changes"
)
# Max speakers
max_speakers = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
value=DEFAULT_MAX_SPEAKERS,
step=1,
label="Maximum Speakers",
info="Maximum number of speakers to detect"
)
# Clear button
clear_btn = gr.Button("Clear Transcript", variant="secondary")
gr.Markdown("### Speaker Colors")
color_info = "\\n".join([
f"Speaker {i+1}: {SPEAKER_COLOR_NAMES[i]}"
for i in range(min(DEFAULT_MAX_SPEAKERS, len(SPEAKER_COLOR_NAMES)))
])
gr.Markdown(color_info)
# Set up streaming
audio_input.stream(
fn=process_audio_stream,
inputs=[audio_input, change_threshold, max_speakers],
outputs=[transcript_output],
show_progress=False
)
# Clear button functionality
clear_btn.click(
fn=clear_transcript,
outputs=[transcript_output]
)
gr.Markdown("""
### Instructions:
1. Allow microphone access when prompted
2. Start speaking - transcription will appear in real-time
3. Different speakers will be automatically detected and labeled
4. Adjust the threshold if speaker changes aren't detected properly
5. Use the clear button to reset the transcript
### Notes:
- The system works best with clear audio and distinct speakers
- It may take a moment to load the speaker recognition model on first use
- Lower threshold values make the system more sensitive to speaker changes
""")
return iface
if __name__ == "__main__":
# Create and launch the interface
iface = create_interface()
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)