RVC-GUI / main /library /utils.py
AnhP's picture
Upload 92 files
6cfcfea verified
raw
history blame
14.2 kB
import os
import re
import sys
import codecs
import librosa
import logging
import numpy as np
import soundfile as sf
from pydub import AudioSegment
sys.path.append(os.getcwd())
from main.tools import huggingface
from main.configs.config import Config
for l in ["httpx", "httpcore"]:
logging.getLogger(l).setLevel(logging.ERROR)
translations = Config().translations
def check_predictors(method, f0_onnx=False):
if f0_onnx and method not in ["harvest", "dio"]: method += "-onnx"
def download(predictors):
if not os.path.exists(os.path.join("assets", "models", "predictors", predictors)): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cerqvpgbef/", "rot13") + predictors, os.path.join("assets", "models", "predictors", predictors))
model_dict = {**dict.fromkeys(["rmvpe", "rmvpe-legacy"], "rmvpe.pt"), **dict.fromkeys(["rmvpe-onnx", "rmvpe-legacy-onnx"], "rmvpe.onnx"), **dict.fromkeys(["fcpe"], "fcpe.pt"), **dict.fromkeys(["fcpe-legacy"], "fcpe_legacy.pt"), **dict.fromkeys(["fcpe-onnx"], "fcpe.onnx"), **dict.fromkeys(["fcpe-legacy-onnx"], "fcpe_legacy.onnx"), **dict.fromkeys(["crepe-full", "mangio-crepe-full"], "crepe_full.pth"), **dict.fromkeys(["crepe-full-onnx", "mangio-crepe-full-onnx"], "crepe_full.onnx"), **dict.fromkeys(["crepe-large", "mangio-crepe-large"], "crepe_large.pth"), **dict.fromkeys(["crepe-large-onnx", "mangio-crepe-large-onnx"], "crepe_large.onnx"), **dict.fromkeys(["crepe-medium", "mangio-crepe-medium"], "crepe_medium.pth"), **dict.fromkeys(["crepe-medium-onnx", "mangio-crepe-medium-onnx"], "crepe_medium.onnx"), **dict.fromkeys(["crepe-small", "mangio-crepe-small"], "crepe_small.pth"), **dict.fromkeys(["crepe-small-onnx", "mangio-crepe-small-onnx"], "crepe_small.onnx"), **dict.fromkeys(["crepe-tiny", "mangio-crepe-tiny"], "crepe_tiny.pth"), **dict.fromkeys(["crepe-tiny-onnx", "mangio-crepe-tiny-onnx"], "crepe_tiny.onnx"), **dict.fromkeys(["harvest", "dio"], "world.pth")}
if "hybrid" in method:
methods_str = re.search("hybrid\[(.+)\]", method)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
for method in methods:
if method in model_dict: download(model_dict[method])
elif method in model_dict: download(model_dict[method])
def check_embedders(hubert, embedders_mode="fairseq"):
huggingface_url = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/rzorqqref/", "rot13")
if hubert in ["contentvec_base", "hubert_base", "japanese_hubert_base", "korean_hubert_base", "chinese_hubert_base", "portuguese_hubert_base"]:
if embedders_mode == "fairseq": hubert += ".pt"
elif embedders_mode == "onnx": hubert += ".onnx"
model_path = os.path.join("assets", "models", "embedders", hubert)
if embedders_mode == "fairseq":
if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "fairseq/", hubert]), model_path)
elif embedders_mode == "onnx":
if not os.path.exists(model_path): huggingface.HF_download_file("".join([huggingface_url, "onnx/", hubert]), model_path)
elif embedders_mode == "transformers":
bin_file = os.path.join(model_path, "model.safetensors")
config_file = os.path.join(model_path, "config.json")
os.makedirs(model_path, exist_ok=True)
if not os.path.exists(bin_file): huggingface.HF_download_file("".join([huggingface_url, "transformers/", hubert, "/model.safetensors"]), bin_file)
if not os.path.exists(config_file): huggingface.HF_download_file("".join([huggingface_url, "transformers/", hubert, "/config.json"]), config_file)
else: raise ValueError(translations["option_not_valid"])
def check_spk_diarization(model_size):
whisper_model = os.path.join("assets", "models", "speaker_diarization", "models", f"{model_size}.pt")
if not os.path.exists(whisper_model): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/", "rot13"), model_size, ".pt"]), whisper_model)
speechbrain_path = os.path.join("assets", "models", "speaker_diarization", "models", "speechbrain")
if not os.path.exists(speechbrain_path): os.makedirs(speechbrain_path, exist_ok=True)
for f in ["classifier.ckpt", "config.json", "embedding_model.ckpt", "hyperparams.yaml", "mean_var_norm_emb.ckpt"]:
speechbrain_model = os.path.join(speechbrain_path, f)
if not os.path.exists(speechbrain_model): huggingface.HF_download_file(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/fcrrpuoenva/", "rot13") + f, speechbrain_model)
def check_audioldm2(model):
for f in ["feature_extractor", "language_model", "projection_model", "scheduler", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "unet", "vae", "vocoder"]:
folder_path = os.path.join("assets", "models", "audioldm2", model, f)
if not os.path.exists(folder_path): os.makedirs(folder_path, exist_ok=True)
for f in ["feature_extractor/preprocessor_config.json","language_model/config.json","language_model/model.safetensors","model_index.json","projection_model/config.json","projection_model/diffusion_pytorch_model.safetensors","scheduler/scheduler_config.json","text_encoder/config.json","text_encoder/model.safetensors","text_encoder_2/config.json","text_encoder_2/model.safetensors","tokenizer/merges.txt","tokenizer/special_tokens_map.json","tokenizer/tokenizer.json","tokenizer/tokenizer_config.json","tokenizer/vocab.json","tokenizer_2/special_tokens_map.json","tokenizer_2/spiece.model","tokenizer_2/tokenizer.json","tokenizer_2/tokenizer_config.json","unet/config.json","unet/diffusion_pytorch_model.safetensors","vae/config.json","vae/diffusion_pytorch_model.safetensors","vocoder/config.json","vocoder/model.safetensors"]:
model_path = os.path.join("assets", "models", "audioldm2", model, f)
if not os.path.exists(model_path): huggingface.HF_download_file("".join([codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/nhqvbyqz/", "rot13"), model, "/", f]), model_path)
def load_audio(logger, file, sample_rate=16000, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))
try:
logger.debug(translations['read_sf'])
audio, sr = sf.read(file, dtype=np.float32)
except:
logger.debug(translations['read_librosa'])
audio, sr = librosa.load(file, sr=None)
if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate, res_type="soxr_vhq")
if formant_shifting:
from main.library.algorithm.stftpitchshift import StftPitchShift
pitchshifter = StftPitchShift(1024, 32, sample_rate)
audio = pitchshifter.shiftpitch(audio, factors=1, quefrency=formant_qfrency * 1e-3, distortion=formant_timbre)
except Exception as e:
raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
return audio.flatten()
def pydub_convert(audio):
samples = np.frombuffer(audio.raw_data, dtype=np.int16)
if samples.dtype != np.int16: samples = (samples * 32767).astype(np.int16)
return AudioSegment(samples.tobytes(), frame_rate=audio.frame_rate, sample_width=samples.dtype.itemsize, channels=audio.channels)
def pydub_load(input_path):
try:
if input_path.endswith(".wav"): audio = AudioSegment.from_wav(input_path)
elif input_path.endswith(".mp3"): audio = AudioSegment.from_mp3(input_path)
elif input_path.endswith(".ogg"): audio = AudioSegment.from_ogg(input_path)
else: audio = AudioSegment.from_file(input_path)
except:
audio = AudioSegment.from_file(input_path)
return audio
def load_embedders_model(embedder_model, embedders_mode="fairseq", providers=None):
if embedders_mode == "fairseq": embedder_model += ".pt"
elif embedders_mode == "onnx": embedder_model += ".onnx"
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedders_mode == "fairseq":
from main.library.architectures import fairseq
models, saved_cfg, _ = fairseq.load_model(embedder_model_path)
embed_suffix = ".pt"
hubert_model = models[0]
elif embedders_mode == "onnx":
import onnxruntime
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
embed_suffix, saved_cfg = ".onnx", None
hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=providers)
elif embedders_mode == "transformers":
from torch import nn
from transformers import HubertModel
class HubertModelWithFinalProj(HubertModel):
def __init__(self, config):
super().__init__(config)
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
embed_suffix, saved_cfg = ".safetensors", None
hubert_model = HubertModelWithFinalProj.from_pretrained(embedder_model_path)
else: raise ValueError(translations["option_not_valid"])
except Exception as e:
raise RuntimeError(translations["read_model_error"].format(e=e))
return hubert_model, saved_cfg, embed_suffix
def cut(audio, sr, db_thresh=-60, min_interval=250):
from main.inference.preprocess import Slicer, get_rms
class Slicer2(Slicer):
def slice2(self, waveform):
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
if samples.shape[0] <= self.min_length: return [(waveform, 0, samples.shape[0])]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start, clip_start = None, 0
for i, rms in enumerate(rms_list):
if rms < self.threshold:
if silence_start is None: silence_start = i
continue
if silence_start is None: continue
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
clip_start = pos_r
silence_start = None
total_frames = rms_list.shape[0]
if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))
if not sil_tags: return [(waveform, 0, samples.shape[-1])]
else:
chunks = []
if sil_tags[0][0] > 0: chunks.append((self._apply_slice(waveform, 0, sil_tags[0][0]), 0, sil_tags[0][0] * self.hop_size))
for i in range(len(sil_tags) - 1):
chunks.append((self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), sil_tags[i][1] * self.hop_size, sil_tags[i + 1][0] * self.hop_size))
if sil_tags[-1][1] < total_frames: chunks.append((self._apply_slice(waveform, sil_tags[-1][1], total_frames), sil_tags[-1][1] * self.hop_size, samples.shape[-1]))
return chunks
slicer = Slicer2(sr=sr, threshold=db_thresh, min_interval=min_interval)
return slicer.slice2(audio)
def restore(segments, total_len, dtype=np.float32):
out = []
last_end = 0
for start, end, processed_seg in segments:
if start > last_end: out.append(np.zeros(start - last_end, dtype=dtype))
out.append(processed_seg)
last_end = end
if last_end < total_len: out.append(np.zeros(total_len - last_end, dtype=dtype))
return np.concatenate(out, axis=-1)