import gradio as gr | |
import whisperx | |
import whisper | |
import torch | |
import spaces | |
def transcribe(audio_file): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Transcribe with original Whisper | |
model = whisper.load_model("medium", device) | |
result = model.transcribe(audio_file) | |
return result | |
inputs = gr.Audio(sources="upload", type="filepath") | |
outputs = gr.JSON() | |
gr.Interface(fn=transcribe, inputs=inputs, outputs=outputs).launch() | |