Spaces:
Runtime error
Runtime error
File size: 7,727 Bytes
d3e7dea d4207fd da5456d d3e7dea bb00028 d3e7dea da5456d d3e7dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import folium
import plotly.express as px
import seaborn as sns
import json
import os
from streamlit_folium import folium_static
st.set_option('deprecation.showPyplotGlobalUse', False)
DATA_ = pd.read_csv("states.csv")
st.title("Sentiment Analysis of Tweets")
st.sidebar.title("Sentiment Analysis of Tweets")
st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets")
def run():
@st.cache(persist=True)
def load_data():
DATA_['tweet_created'] = pd.to_datetime(DATA_['Datetime'])
return DATA_
data = load_data()
st.sidebar.subheader("Show random tweet")
random_tweet = st.sidebar.radio('Sentiment', ('-1','1'))
st.sidebar.markdown(data.query('Labels1 == @random_tweet')[["text_clean_translated"]].sample(n=1).iat[0,0])
st.sidebar.markdown("### Number of tweets by sentiment")
select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart'])
sentiment_count = data['Labels1'].value_counts()
sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values})
if not st.sidebar.checkbox("Hide", True):
st.markdown("### Number of tweets by sentiment")
if select == "Histogram":
fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500)
st.plotly_chart(fig)
else:
fig = px.pie(sentiment_count, values='Tweets', names='Sentiment')
st.plotly_chart(fig)
st.sidebar.subheader("When and Where are users tweeting from?")
hour = st.sidebar.slider("Hour of day", 0,23)
modified_data = data[data['tweet_created'].dt.hour == hour]
if not st.sidebar.checkbox("Close", True, key='1'):
st.markdown("### Tweets locations based on the time of date")
st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24))
st.map(modified_data)
if st.sidebar.checkbox("Show Raw Data", False):
st.write(modified_data)
st.sidebar.subheader("Breakdown language tweets by sentiment")
choice = st.sidebar.multiselect('Pick language', ('en', 'hi'), key='0')
if len(choice) > 0:
choice_data = data[data.language.isin(choice)]
fig_choice = px.histogram(choice_data, x='language',
y='sentiment_flair',
histfunc = 'count', color = 'Labels1',
facet_col='Labels1',
labels={'Labels1':'tweets'}, height=600, width=800)
st.plotly_chart(fig_choice)
st.sidebar.header("Word Cloud")
word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('Positive', 'Neutral','Negative'))
if not st.sidebar.checkbox("Close", True, key='3'):
st.header('Word cloud for %s sentiment' % (word_sentiment))
df = data[data['sentiment_flair']==word_sentiment]
words = ' '.join(df['Text'])
processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT'])
wordcloud = WordCloud(stopwords=STOPWORDS,
background_color='white', height=640, width=800).generate(processed_words)
plt.imshow(wordcloud)
plt.xticks([])
plt.yticks([])
st.pyplot()
#################################### choropleth map #############################################################
with open('india_state.json') as file:
geojsonData = json.load(file)
for i in geojsonData['features']:
i['id'] = i['properties']['NAME_1']
map_choropleth_high_public = folium.Map(location = [20.5937,78.9629], zoom_start = 4)
df1 = data
df1 = df1[df1['location'].notna()]
def get_state(x):
states = ["Andaman and Nicobar Islands","Andhra Pradesh","Arunachal Pradesh","Assam","Bihar","Chandigarh","Chhattisgarh",
"Dadra and Nagar Haveli","Daman and Diu","Delhi","Goa","Gujarat","Haryana","Himachal Pradesh","Jammu and Kashmir",
"Jharkhand","Karnataka","Kerala","Ladakh","Lakshadweep","Madhya Pradesh","Maharashtra","Manipur","Meghalaya",
"Mizoram","Nagaland","Odisha","Puducherry","Punjab","Rajasthan","Sikkim","Tamil Nadu","Telangana","Tripura","Uttar Pradesh","Uttarakhand","West Bengal"]
states_dict = {"Delhi":"New Delhi","Gujarat":"Surat","Haryana":"Gurgaon", "Karnataka":"Bangalore", "Karnataka":"Bengaluru", "Maharashtra":"Pune","Maharashtra":"Mumbai","Maharashtra":"Navi Mumbai","Telangana":"Hyderabad","West Bengal":"Kolkata",
"Gujarat":"Surat","Rajasthan":"Kota","Rajasthan":"Jodhpur","Karnataka":"Bengaluru South","Uttar Pradesh":"Lukhnow","Uttar Pradesh":"Noida","Bihar":"Patna","Uttarakhand":"Dehradun","Madhya Pradesh":"Indore" , "Madhya Pradesh":"Bhopal",
"Andaman and Nicobar Islands":"Andaman and Nicobar Islands", "Andhra Pradesh":"Andhra Pradesh","Arunachal Pradesh":"Arunachal Pradesh","Assam":"Assam","Bihar":"Bihar",
"Chandigarh":"Chandigarh","Chhattisgarh":"Chhattisgarh", "Dadra and Nagar Haveli": "Dadra and Nagar Haveli","Daman and Diu":"Daman and Diu","Delhi":"Delhi",
"Goa":"Goa","Gujarat":"Gujarat","Haryana":"Haryana","Himachal Pradesh":"Himachal Pradesh","Jammu and Kashmir":"Jammu and Kashmir", "Jharkhand": "Jharkhand",
"Karnataka":"Karnataka","Kerala":"Kerala","Ladakh":"Ladakh","Lakshadweep":"Lakshadweep","Madhya Pradesh":"Madhya Pradesh","Maharashtra":"Maharashtra",
"Odisha":"Odisha","Puducherry":"Puducherry","Punjab":"Punjab","Rajasthan":"Rajasthan","Tamil Nadu":"Tamil Nadu","Telangana":"Telangana","Uttar Pradesh":"Uttar Pradesh",
"Uttarakhand":"Uttarakhand","West Bengal":"West Bengal","West Bengal":"Calcutta","Uttar Pradesh":"Lucknow"
}
abv = x.split(',')[-1].lstrip()
state_name = x.split(',')[0].lstrip()
if abv in states:
state = abv
else:
if state_name in states_dict.values():
state = list(states_dict.keys())[list(states_dict.values()).index(state_name)]
else:
state = 'Non_India'
return state
# create abreviated states column
df2 = df1.copy()
df2['states'] = df1['location'].apply(get_state)
# extract total sentiment per state
df_state_sentiment = df2.groupby(['states'])['Label'].value_counts().unstack().fillna(0.0).reset_index()
df_state_sentiment['total_sentiment'] = -(df_state_sentiment[0])+df_state_sentiment[1]
dff = df_state_sentiment[df_state_sentiment['states'] != 'Non_India']
folium.Choropleth(geo_data=geojsonData,
data=dff,
name='CHOROPLETH',
key_on='feature.id',
columns = ['states','total_sentiment'],
fill_color='YlOrRd',
fill_opacity=0.7,
line_opacity=0.4,
legend_name='Sentiments',
highlight=True).add_to(map_choropleth_high_public)
folium.LayerControl().add_to(map_choropleth_high_public)
#display(map_choropleth_high_public)
st.sidebar.header("Map Visualisation")
if not st.sidebar.checkbox("Close", True, key='4'):
folium_static(map_choropleth_high_public)
if __name__ == '__main__':
run()
|