Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from wordcloud import WordCloud, STOPWORDS | |
import matplotlib.pyplot as plt | |
import folium | |
import plotly.express as px | |
import seaborn as sns | |
import json | |
import os | |
from streamlit_folium import folium_static | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
DATA_ = pd.read_csv("states.csv") | |
st.title("Sentiment Analysis of Tweets") | |
st.sidebar.title("Sentiment Analysis of Tweets") | |
st.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets") | |
st.sidebar.markdown("This application is a streamlit dashboard to analyze the sentiment of Tweets") | |
def run(): | |
def load_data(): | |
DATA_['tweet_created'] = pd.to_datetime(DATA_['Datetime']) | |
return DATA_ | |
data = load_data() | |
st.sidebar.subheader("Show random tweet") | |
random_tweet = st.sidebar.radio('Sentiment', ('-1','1')) | |
st.sidebar.markdown(data.query('Labels1 == @random_tweet')[["text_clean_translated"]].sample(n=1).iat[0,0]) | |
st.sidebar.markdown("### Number of tweets by sentiment") | |
select = st.sidebar.selectbox('Visualization type', ['Histogram', 'Pie chart']) | |
sentiment_count = data['Labels1'].value_counts() | |
sentiment_count = pd.DataFrame({'Sentiment':sentiment_count.index, 'Tweets':sentiment_count.values}) | |
if not st.sidebar.checkbox("Hide", True): | |
st.markdown("### Number of tweets by sentiment") | |
if select == "Histogram": | |
fig = px.bar(sentiment_count, x='Sentiment', y='Tweets', color='Tweets', height=500) | |
st.plotly_chart(fig) | |
else: | |
fig = px.pie(sentiment_count, values='Tweets', names='Sentiment') | |
st.plotly_chart(fig) | |
st.sidebar.subheader("When and Where are users tweeting from?") | |
hour = st.sidebar.slider("Hour of day", 0,23) | |
modified_data = data[data['tweet_created'].dt.hour == hour] | |
if not st.sidebar.checkbox("Close", True, key='1'): | |
st.markdown("### Tweets locations based on the time of date") | |
st.markdown("%i tweets between %i:00 and %i:00" % (len(modified_data), hour, (hour+1)%24)) | |
st.map(modified_data) | |
if st.sidebar.checkbox("Show Raw Data", False): | |
st.write(modified_data) | |
st.sidebar.subheader("Breakdown language tweets by sentiment") | |
choice = st.sidebar.multiselect('Pick language', ('en', 'hi'), key='0') | |
if len(choice) > 0: | |
choice_data = data[data.language.isin(choice)] | |
fig_choice = px.histogram(choice_data, x='language', | |
y='sentiment_flair', | |
histfunc = 'count', color = 'Labels1', | |
facet_col='Labels1', | |
labels={'Labels1':'tweets'}, height=600, width=800) | |
st.plotly_chart(fig_choice) | |
st.sidebar.header("Word Cloud") | |
word_sentiment = st.sidebar.radio('Display word cloud for what sentiment?',('Positive', 'Neutral','Negative')) | |
if not st.sidebar.checkbox("Close", True, key='3'): | |
st.header('Word cloud for %s sentiment' % (word_sentiment)) | |
df = data[data['sentiment_flair']==word_sentiment] | |
words = ' '.join(df['Text']) | |
processed_words = ' '.join([word for word in words.split() if 'http' not in word and not word.startswith('@') and word !='RT']) | |
wordcloud = WordCloud(stopwords=STOPWORDS, | |
background_color='white', height=640, width=800).generate(processed_words) | |
plt.imshow(wordcloud) | |
plt.xticks([]) | |
plt.yticks([]) | |
st.pyplot() | |
#################################### choropleth map ############################################################# | |
with open('india_state.json') as file: | |
geojsonData = json.load(file) | |
for i in geojsonData['features']: | |
i['id'] = i['properties']['NAME_1'] | |
map_choropleth_high_public = folium.Map(location = [20.5937,78.9629], zoom_start = 4) | |
df1 = data | |
df1 = df1[df1['location'].notna()] | |
def get_state(x): | |
states = ["Andaman and Nicobar Islands","Andhra Pradesh","Arunachal Pradesh","Assam","Bihar","Chandigarh","Chhattisgarh", | |
"Dadra and Nagar Haveli","Daman and Diu","Delhi","Goa","Gujarat","Haryana","Himachal Pradesh","Jammu and Kashmir", | |
"Jharkhand","Karnataka","Kerala","Ladakh","Lakshadweep","Madhya Pradesh","Maharashtra","Manipur","Meghalaya", | |
"Mizoram","Nagaland","Odisha","Puducherry","Punjab","Rajasthan","Sikkim","Tamil Nadu","Telangana","Tripura","Uttar Pradesh","Uttarakhand","West Bengal"] | |
states_dict = {"Delhi":"New Delhi","Gujarat":"Surat","Haryana":"Gurgaon", "Karnataka":"Bangalore", "Karnataka":"Bengaluru", "Maharashtra":"Pune","Maharashtra":"Mumbai","Maharashtra":"Navi Mumbai","Telangana":"Hyderabad","West Bengal":"Kolkata", | |
"Gujarat":"Surat","Rajasthan":"Kota","Rajasthan":"Jodhpur","Karnataka":"Bengaluru South","Uttar Pradesh":"Lukhnow","Uttar Pradesh":"Noida","Bihar":"Patna","Uttarakhand":"Dehradun","Madhya Pradesh":"Indore" , "Madhya Pradesh":"Bhopal", | |
"Andaman and Nicobar Islands":"Andaman and Nicobar Islands", "Andhra Pradesh":"Andhra Pradesh","Arunachal Pradesh":"Arunachal Pradesh","Assam":"Assam","Bihar":"Bihar", | |
"Chandigarh":"Chandigarh","Chhattisgarh":"Chhattisgarh", "Dadra and Nagar Haveli": "Dadra and Nagar Haveli","Daman and Diu":"Daman and Diu","Delhi":"Delhi", | |
"Goa":"Goa","Gujarat":"Gujarat","Haryana":"Haryana","Himachal Pradesh":"Himachal Pradesh","Jammu and Kashmir":"Jammu and Kashmir", "Jharkhand": "Jharkhand", | |
"Karnataka":"Karnataka","Kerala":"Kerala","Ladakh":"Ladakh","Lakshadweep":"Lakshadweep","Madhya Pradesh":"Madhya Pradesh","Maharashtra":"Maharashtra", | |
"Odisha":"Odisha","Puducherry":"Puducherry","Punjab":"Punjab","Rajasthan":"Rajasthan","Tamil Nadu":"Tamil Nadu","Telangana":"Telangana","Uttar Pradesh":"Uttar Pradesh", | |
"Uttarakhand":"Uttarakhand","West Bengal":"West Bengal","West Bengal":"Calcutta","Uttar Pradesh":"Lucknow" | |
} | |
abv = x.split(',')[-1].lstrip() | |
state_name = x.split(',')[0].lstrip() | |
if abv in states: | |
state = abv | |
else: | |
if state_name in states_dict.values(): | |
state = list(states_dict.keys())[list(states_dict.values()).index(state_name)] | |
else: | |
state = 'Non_India' | |
return state | |
# create abreviated states column | |
df2 = df1.copy() | |
df2['states'] = df1['location'].apply(get_state) | |
# extract total sentiment per state | |
df_state_sentiment = df2.groupby(['states'])['Label'].value_counts().unstack().fillna(0.0).reset_index() | |
df_state_sentiment['total_sentiment'] = -(df_state_sentiment[0])+df_state_sentiment[1] | |
dff = df_state_sentiment[df_state_sentiment['states'] != 'Non_India'] | |
folium.Choropleth(geo_data=geojsonData, | |
data=dff, | |
name='CHOROPLETH', | |
key_on='feature.id', | |
columns = ['states','total_sentiment'], | |
fill_color='YlOrRd', | |
fill_opacity=0.7, | |
line_opacity=0.4, | |
legend_name='Sentiments', | |
highlight=True).add_to(map_choropleth_high_public) | |
folium.LayerControl().add_to(map_choropleth_high_public) | |
#display(map_choropleth_high_public) | |
st.sidebar.header("Map Visualisation") | |
if not st.sidebar.checkbox("Close", True, key='4'): | |
folium_static(map_choropleth_high_public) | |
if __name__ == '__main__': | |
run() | |