File size: 9,874 Bytes
135d1e4
 
 
 
45309a1
 
 
135d1e4
b407fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135d1e4
 
 
 
 
 
 
 
45309a1
 
 
 
 
 
135d1e4
 
 
 
 
45309a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135d1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45309a1
135d1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45309a1
 
 
 
 
 
135d1e4
 
 
 
 
45309a1
 
 
 
 
 
 
 
 
 
 
 
 
 
135d1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45309a1
 
 
 
 
 
 
 
 
 
135d1e4
 
 
b407fad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import streamlit as st
import requests
import numpy as np
import time
import threading
import json
from datetime import datetime

# Client Simulator Class (moved to top)
class ClientSimulator:
    def __init__(self, server_url):
        self.server_url = server_url
        self.client_id = f"web_client_{int(time.time())}"
        self.is_running = False
        self.thread = None
        self.last_update = "Never"
        
    def start(self):
        self.is_running = True
        self.thread = threading.Thread(target=self._run_client, daemon=True)
        self.thread.start()
        
    def stop(self):
        self.is_running = False
        
    def _run_client(self):
        try:
            # Register with server
            client_info = {
                'dataset_size': 100,
                'model_params': 10000,
                'capabilities': ['training', 'inference']
            }
            
            resp = requests.post(f"{self.server_url}/register", 
                               json={'client_id': self.client_id, 'client_info': client_info})
            
            if resp.status_code == 200:
                st.session_state.training_history.append({
                    'round': 0,
                    'active_clients': 1,
                    'clients_ready': 0,
                    'timestamp': datetime.now()
                })
                
                # Simulate client participation
                while self.is_running:
                    try:
                        # Get training status
                        status = requests.get(f"{self.server_url}/training_status")
                        if status.status_code == 200:
                            data = status.json()
                            
                            # Update training history
                            st.session_state.training_history.append({
                                'round': data.get('current_round', 0),
                                'active_clients': data.get('active_clients', 0),
                                'clients_ready': data.get('clients_ready', 0),
                                'timestamp': datetime.now()
                            })
                            
                            # Keep only last 50 entries
                            if len(st.session_state.training_history) > 50:
                                st.session_state.training_history = st.session_state.training_history[-50:]
                        
                        time.sleep(5)  # Check every 5 seconds
                        
                    except Exception as e:
                        print(f"Client simulator error: {e}")
                        time.sleep(10)
                        
        except Exception as e:
            print(f"Failed to start client simulator: {e}")
            self.is_running = False

st.set_page_config(page_title="Federated Credit Scoring Demo", layout="centered")
st.title("Federated Credit Scoring Demo (Federated Learning)")

# Sidebar configuration
st.sidebar.header("Configuration")
SERVER_URL = st.sidebar.text_input("Server URL", value="http://localhost:8080")
DEMO_MODE = st.sidebar.checkbox("Demo Mode (No Server Required)", value=True)

# Initialize session state
if 'client_simulator' not in st.session_state:
    st.session_state.client_simulator = None
if 'training_history' not in st.session_state:
    st.session_state.training_history = []

st.markdown("""
This demo shows how multiple banks can collaboratively train a credit scoring model using federated learning, without sharing raw data.
Enter customer features below to get a credit score prediction from the federated model.
""")

# --- Client Simulator ---
st.sidebar.header("Client Simulator")
if st.sidebar.button("Start Client Simulator"):
    if not DEMO_MODE:
        st.session_state.client_simulator = ClientSimulator(SERVER_URL)
        st.session_state.client_simulator.start()
        st.sidebar.success("Client simulator started!")
    else:
        st.sidebar.warning("Client simulator only works in Real Mode")

if st.sidebar.button("Stop Client Simulator"):
    if st.session_state.client_simulator:
        st.session_state.client_simulator.stop()
        st.session_state.client_simulator = None
        st.sidebar.success("Client simulator stopped!")

# --- Feature Input Form ---
st.header("Enter Customer Features")
with st.form("feature_form"):
    features = []
    cols = st.columns(4)
    for i in range(32):
        with cols[i % 4]:
            val = st.number_input(f"Feature {i+1}", value=0.0, format="%.4f", key=f"f_{i}")
            features.append(val)
    submitted = st.form_submit_button("Predict Credit Score")

# --- Prediction ---
if submitted:
    if DEMO_MODE:
        # Demo mode - simulate prediction
        with st.spinner("Processing prediction..."):
            time.sleep(1)  # Simulate processing time
        
        # Simple demo prediction based on feature values
        demo_prediction = sum(features) / len(features) * 100 + 500  # Scale to credit score range
        st.success(f"Demo Prediction: Credit Score = {demo_prediction:.2f}")
        st.info("πŸ’‘ This is a demo prediction. In a real federated system, this would come from the trained model.")
        
        # Show what would happen in real mode
        st.markdown("---")
        st.markdown("**What happens in real federated learning:**")
        st.markdown("1. Your features are sent to the federated server")
        st.markdown("2. Server uses the global model (trained by multiple banks)")
        st.markdown("3. Prediction is returned without exposing any bank's data")
        
    else:
        # Real mode - connect to server
        try:
            with st.spinner("Connecting to federated server..."):
                resp = requests.post(f"{SERVER_URL}/predict", json={"features": features}, timeout=10)
            
            if resp.status_code == 200:
                prediction = resp.json().get("prediction")
                st.success(f"Predicted Credit Score: {prediction:.2f}")
                st.info("🎯 This prediction comes from the federated model trained by multiple banks!")
            else:
                st.error(f"Prediction failed: {resp.json().get('error', 'Unknown error')}")
        except Exception as e:
            st.error(f"Error connecting to server: {e}")
            st.info("πŸ’‘ Try enabling Demo Mode to see the interface without a server.")

# --- Training Progress ---
st.header("Federated Training Progress")

if DEMO_MODE:
    # Demo training progress
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Current Round", "3/10")
    with col2:
        st.metric("Active Clients", "3")
    with col3:
        st.metric("Model Accuracy", "85.2%")
    with col4:
        st.metric("Training Status", "Active")
    
    st.info("πŸ’‘ Demo mode showing simulated training progress. In real federated learning, multiple banks would be training collaboratively.")
    
else:
    # Real training progress
    try:
        status = requests.get(f"{SERVER_URL}/training_status", timeout=5)
        if status.status_code == 200:
            data = status.json()
            col1, col2, col3, col4 = st.columns(4)
            with col1:
                st.metric("Current Round", f"{data.get('current_round', 0)}/{data.get('total_rounds', 10)}")
            with col2:
                st.metric("Active Clients", data.get('active_clients', 0))
            with col3:
                st.metric("Clients Ready", data.get('clients_ready', 0))
            with col4:
                st.metric("Training Status", "Active" if data.get('training_active', False) else "Inactive")
            
            # Show training history
            if st.session_state.training_history:
                st.subheader("Training History")
                history_df = st.session_state.training_history
                st.line_chart(history_df.set_index('round')[['active_clients', 'clients_ready']])
        else:
            st.warning("Could not fetch training status.")
    except Exception as e:
        st.warning(f"Could not connect to server for training status: {e}")

# --- Server Health Check ---
if not DEMO_MODE:
    st.header("Server Health")
    try:
        health = requests.get(f"{SERVER_URL}/health", timeout=5)
        if health.status_code == 200:
            health_data = health.json()
            st.success(f"βœ… Server is healthy")
            st.json(health_data)
        else:
            st.error("❌ Server health check failed")
    except Exception as e:
        st.error(f"❌ Cannot connect to server: {e}")

# --- How it works ---
st.header("How Federated Learning Works")
st.markdown("""
**Traditional ML:** All banks send their data to a central server β†’ Privacy risk ❌

**Federated Learning:** 
1. Each bank keeps their data locally βœ…
2. Banks train models on their own data βœ…  
3. Only model updates (not data) are shared βœ…
4. Server aggregates updates to create global model βœ…
5. Global model is distributed back to all banks βœ…

**Result:** Collaborative learning without data sharing! 🎯
""")

# --- Client Simulator Status ---
if st.session_state.client_simulator and not DEMO_MODE:
    st.header("Client Simulator Status")
    if st.session_state.client_simulator.is_running:
        st.success("🟒 Client simulator is running and participating in federated learning")
        st.info(f"Client ID: {st.session_state.client_simulator.client_id}")
        st.info(f"Last update: {st.session_state.client_simulator.last_update}")
    else:
        st.warning("πŸ”΄ Client simulator is not running")

st.markdown("---")
st.markdown("""
*This is a demonstration of federated learning concepts. For full functionality, run the federated server and clients locally.*
""")