β€œTranscendental-Programmer” commited on
Commit
6bb2c39
Β·
1 Parent(s): 80ee9ee

feat : edit readme

Browse files
Files changed (1) hide show
  1. README.md +0 -104
README.md CHANGED
@@ -14,107 +14,3 @@ pinned: false
14
  short_description: Federated Learning Credit Scoring Demo with Privacy-Preserving Model Training
15
  license: mit
16
  ---
17
-
18
- # Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration
19
-
20
- This project implements a federated learning framework combined with a Retrieval-Augmented Generation (RAG) system to generate privacy-preserving synthetic financial data.
21
-
22
- ## Features
23
-
24
- - Federated Learning using TensorFlow
25
- - Privacy-preserving data generation using VAE/GAN
26
- - RAG integration for enhanced data quality
27
- - Secure Multi-Party Computation (SMPC)
28
- - Differential Privacy implementation
29
- - Kubernetes-based deployment
30
- - Comprehensive monitoring and logging
31
- - **NEW: Interactive Web Demo** - Try it out without setup!
32
-
33
- ## Quick Demo (No Installation Required)
34
-
35
- πŸš€ **Live Demo**: [Hugging Face Spaces](https://huggingface.co/spaces/ArchCoder/federated-credit-scoring)
36
-
37
- The web demo allows you to:
38
- - Enter customer features and get credit score predictions
39
- - See how federated learning works
40
- - Understand privacy-preserving ML concepts
41
-
42
- ## Installation
43
-
44
- ```bash
45
- # Create virtual environment
46
- python3 -m venv venv
47
- source venv/bin/activate # On Windows: venv\Scripts\activate
48
-
49
- # Install dependencies
50
- pip install -r requirements.txt
51
- ```
52
-
53
- ## Federated Credit Scoring Demo (with Web App)
54
-
55
- This project includes a demo where multiple banks (clients) collaboratively train a credit scoring model using federated learning. A Streamlit web app allows you to enter customer features and get a credit score prediction from the federated model.
56
-
57
- ### Quick Start
58
-
59
- 1. **Install dependencies**
60
-
61
- ```bash
62
- pip install -r requirements.txt
63
- ```
64
-
65
- 2. **Start the Federated Server**
66
-
67
- ```bash
68
- python -m src.main --mode server --config config/server_config.yaml
69
- ```
70
-
71
- 3. **Start at least two Clients (in separate terminals)**
72
-
73
- ```bash
74
- python -m src.main --mode client --config config/client_config.yaml
75
- ```
76
-
77
- 4. **Run the Web App**
78
-
79
- ```bash
80
- streamlit run webapp/streamlit_app.py
81
- ```
82
-
83
- 5. **Use the Web App**
84
- - Enter 32 features (dummy values are fine for demo)
85
- - Click "Predict Credit Score" to get a prediction from the federated model
86
- - View training progress in the app
87
- - Toggle between Demo Mode (no server required) and Real Mode (connects to server)
88
-
89
- *For best results, keep the server and at least two clients running in parallel.*
90
-
91
- ## Project Structure
92
-
93
- ```
94
- FinFedRAG-Financial-Federated-RAG/
95
- β”œβ”€β”€ src/
96
- β”‚ β”œβ”€β”€ api/ # REST API for server and client communication
97
- β”‚ β”œβ”€β”€ client/ # Federated learning client implementation
98
- β”‚ β”œβ”€β”€ server/ # Federated learning server and coordinator
99
- β”‚ β”œβ”€β”€ rag/ # Retrieval-Augmented Generation components
100
- β”‚ β”œβ”€β”€ models/ # VAE/GAN models for data generation
101
- β”‚ └── utils/ # Privacy, metrics, and utility functions
102
- β”œβ”€β”€ webapp/ # Streamlit web application
103
- β”œβ”€β”€ config/ # Configuration files
104
- β”œβ”€β”€ tests/ # Unit and integration tests
105
- β”œβ”€β”€ docker/ # Docker configurations
106
- β”œβ”€β”€ kubernetes/ # Kubernetes deployment files
107
- └── app.py # Root app.py for Hugging Face Spaces deployment
108
- ```
109
-
110
- ## License
111
-
112
- MIT
113
-
114
- ## Contributing
115
-
116
- Please read our contributing guidelines before submitting pull requests.
117
-
118
- ---
119
-
120
- **Demo URL**: https://huggingface.co/spaces/ArchCoder/federated-credit-scoring
 
14
  short_description: Federated Learning Credit Scoring Demo with Privacy-Preserving Model Training
15
  license: mit
16
  ---