|
import gradio as gr |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
|
|
|
|
def generate_script(title): |
|
|
|
prompt = "Title: " + title + "\n\nScript:" |
|
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=1024, truncation=True) |
|
|
|
|
|
output = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7) |
|
|
|
|
|
script = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return script |
|
|
|
|
|
title_input = gr.inputs.Textbox(lines=2, label="Enter Title") |
|
script_output = gr.outputs.Textbox(label="Generated Script") |
|
|
|
gr.Interface(generate_script, title_input, script_output, title="Script Generator", description="Generate a script based on the provided title.").launch() |
|
|