Update app.py
Browse files
app.py
CHANGED
|
@@ -18,12 +18,11 @@ from langchain_community.tools.sql_database.tool import (
|
|
| 18 |
QuerySQLDataBaseTool,
|
| 19 |
)
|
| 20 |
from langchain_community.utilities.sql_database import SQLDatabase
|
|
|
|
| 21 |
import tempfile
|
| 22 |
|
| 23 |
-
# Setup GROQ API Key
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
| 26 |
-
# Callback handler for logging LLM responses
|
| 27 |
class Event:
|
| 28 |
def __init__(self, event, text):
|
| 29 |
self.event = event
|
|
@@ -43,112 +42,109 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
| 43 |
with self.log_path.open("a", encoding="utf-8") as file:
|
| 44 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
| 45 |
|
| 46 |
-
# LLM Setup
|
| 47 |
llm = ChatGroq(
|
| 48 |
temperature=0,
|
| 49 |
model_name="mixtral-8x7b-32768",
|
| 50 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 51 |
)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
st.
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# Clean up
|
| 154 |
-
temp_dir.cleanup()
|
|
|
|
| 18 |
QuerySQLDataBaseTool,
|
| 19 |
)
|
| 20 |
from langchain_community.utilities.sql_database import SQLDatabase
|
| 21 |
+
from datasets import load_dataset
|
| 22 |
import tempfile
|
| 23 |
|
|
|
|
| 24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 25 |
|
|
|
|
| 26 |
class Event:
|
| 27 |
def __init__(self, event, text):
|
| 28 |
self.event = event
|
|
|
|
| 42 |
with self.log_path.open("a", encoding="utf-8") as file:
|
| 43 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
| 44 |
|
|
|
|
| 45 |
llm = ChatGroq(
|
| 46 |
temperature=0,
|
| 47 |
model_name="mixtral-8x7b-32768",
|
| 48 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
| 49 |
)
|
| 50 |
|
| 51 |
+
st.title("SQL-RAG using CrewAI π")
|
| 52 |
+
st.write("Analyze and summarize Hugging Face datasets using natural language queries with SQL-based retrieval.")
|
| 53 |
+
|
| 54 |
+
default_dataset = "datascience/ds-salaries"
|
| 55 |
+
st.text("Example dataset: `datascience/ds-salaries` (You can enter your own dataset name)")
|
| 56 |
+
|
| 57 |
+
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset)
|
| 58 |
+
|
| 59 |
+
if dataset_name:
|
| 60 |
+
with st.spinner("Loading dataset..."):
|
| 61 |
+
try:
|
| 62 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 63 |
+
df = pd.DataFrame(dataset)
|
| 64 |
+
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
| 65 |
+
st.write("Preview of the dataset:")
|
| 66 |
+
st.dataframe(df.head())
|
| 67 |
+
|
| 68 |
+
temp_dir = tempfile.TemporaryDirectory()
|
| 69 |
+
db_path = os.path.join(temp_dir.name, "data.db")
|
| 70 |
+
connection = sqlite3.connect(db_path)
|
| 71 |
+
df.to_sql("data_table", connection, if_exists="replace", index=False)
|
| 72 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
| 73 |
+
|
| 74 |
+
@tool("list_tables")
|
| 75 |
+
def list_tables() -> str:
|
| 76 |
+
return ListSQLDatabaseTool(db=db).invoke("")
|
| 77 |
+
|
| 78 |
+
@tool("tables_schema")
|
| 79 |
+
def tables_schema(tables: str) -> str:
|
| 80 |
+
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
| 81 |
+
|
| 82 |
+
@tool("execute_sql")
|
| 83 |
+
def execute_sql(sql_query: str) -> str:
|
| 84 |
+
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
| 85 |
+
|
| 86 |
+
@tool("check_sql")
|
| 87 |
+
def check_sql(sql_query: str) -> str:
|
| 88 |
+
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
| 89 |
+
|
| 90 |
+
sql_dev = Agent(
|
| 91 |
+
role="Database Developer",
|
| 92 |
+
goal="Extract data from the database.",
|
| 93 |
+
llm=llm,
|
| 94 |
+
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
| 95 |
+
allow_delegation=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
data_analyst = Agent(
|
| 99 |
+
role="Data Analyst",
|
| 100 |
+
goal="Analyze and provide insights.",
|
| 101 |
+
llm=llm,
|
| 102 |
+
allow_delegation=False,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
report_writer = Agent(
|
| 106 |
+
role="Report Editor",
|
| 107 |
+
goal="Summarize the analysis.",
|
| 108 |
+
llm=llm,
|
| 109 |
+
allow_delegation=False,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
extract_data = Task(
|
| 113 |
+
description="Extract data required for the query: {query}.",
|
| 114 |
+
expected_output="Database result for the query",
|
| 115 |
+
agent=sql_dev,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
analyze_data = Task(
|
| 119 |
+
description="Analyze the data for: {query}.",
|
| 120 |
+
expected_output="Detailed analysis text",
|
| 121 |
+
agent=data_analyst,
|
| 122 |
+
context=[extract_data],
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
write_report = Task(
|
| 126 |
+
description="Summarize the analysis into a short report.",
|
| 127 |
+
expected_output="Markdown report",
|
| 128 |
+
agent=report_writer,
|
| 129 |
+
context=[analyze_data],
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
crew = Crew(
|
| 133 |
+
agents=[sql_dev, data_analyst, report_writer],
|
| 134 |
+
tasks=[extract_data, analyze_data, write_report],
|
| 135 |
+
process=Process.sequential,
|
| 136 |
+
verbose=2,
|
| 137 |
+
memory=False,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
query = st.text_input("Enter your query:", placeholder="e.g., 'How does salary vary by company size?'")
|
| 141 |
+
if query:
|
| 142 |
+
with st.spinner("Processing your query..."):
|
| 143 |
+
inputs = {"query": query}
|
| 144 |
+
result = crew.kickoff(inputs=inputs)
|
| 145 |
+
st.markdown("### Analysis Report:")
|
| 146 |
+
st.markdown(result)
|
| 147 |
+
|
| 148 |
+
temp_dir.cleanup()
|
| 149 |
+
except Exception as e:
|
| 150 |
+
st.error(f"Error loading dataset: {e}")
|
|
|
|
|
|