Spaces:
Sleeping
Sleeping
File size: 6,271 Bytes
d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 9b7d147 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 9b7d147 e28b51d 246a819 586457a e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 e18a03c 586457a d110ed4 586457a d110ed4 e28b51d d110ed4 e28b51d d110ed4 e28b51d d110ed4 246a819 586457a 9b7d147 246a819 e28b51d b634739 e28b51d b634739 e28b51d d110ed4 6ca0343 e7b1b3f 6ca0343 8d977b7 e28b51d e7b1b3f e28b51d b634739 e28b51d d110ed4 e28b51d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
AutoModelForImageSegmentation,
DepthProImageProcessorFast,
DepthProForDepthEstimation,
)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
"briaai/RMBG-2.0", trust_remote_code=True
)
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()
# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
transforms.Resize(seg_image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()
# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
imageResized = input_image.resize(seg_image_size)
input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
with torch.no_grad():
preds = seg_model(input_tensor)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(imageResized.size)
mask_np = np.array(mask.convert("L"))
_, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
maskInv = cv2.bitwise_not(maskBinary)
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
background = cv2.bitwise_and(blurredBg, maskInv3)
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
finalImg_pil = Image.fromarray(finalImg)
return finalImg_pil, mask
def lens_blur_effect(input_image: Image.Image, fg_threshold: float = 85, mg_threshold: float = 170):
inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = depth_model(**inputs)
post_processed_output = depth_processor.post_process_depth_estimation(
outputs, target_sizes=[(input_image.height, input_image.width)]
)
depth = post_processed_output[0]["predicted_depth"]
depth = (depth - depth.min()) / (depth.max() - depth.min())
depth = depth * 255.
depth = depth.detach().cpu().numpy()
depth_map = depth.astype(np.uint8)
depthImg = Image.fromarray(depth_map)
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
img_foreground = img.copy() # No blur for foreground
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
print(depth_map)
depth_map = depth_map.astype(np.float32) / depth_map.max()
threshold1 = fg_threshold
threshold2 = mg_threshold
mask_fg = (depth_map < threshold1).astype(np.float32)
mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
mask_bg = (depth_map >= threshold2).astype(np.float32)
mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
final_img = (img_foreground * mask_fg_3 +
img_middleground * mask_mg_3 +
img_background * mask_bg_3).astype(np.uint8)
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
lensBlurImage = Image.fromarray(final_img_rgb)
mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img
def process_image(input_image: Image.Image, fg_threshold: float, mg_threshold: float):
seg_blur, seg_mask = segmentation_blur_effect(input_image)
depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(
input_image, fg_threshold, mg_threshold
)
return (
seg_blur,
# seg_mask,
depth_map_img,
lens_blur_img,
# mask_fg_img,
# mask_mg_img,
# mask_bg_img
)
def update_preset(preset: str):
presets = {
"Preset 1": {
"image_url": "https://i.ibb.co/fznz2b2b/hw3-q2.jpg",
"fg_threshold": 0.33,
"mg_threshold": 0.66
},
"Preset 2": {
"image_url": "https://i.ibb.co/HLZGW7qH/q26.jpg",
"fg_threshold": 0.2,
"mg_threshold": 0.66
}
}
preset_info = presets[preset]
response = requests.get(preset_info["image_url"])
image = Image.open(BytesIO(response.content)).convert("RGB")
return image, preset_info["fg_threshold"], preset_info["mg_threshold"]
title = "Blur Effects on Segmentation-Based Gaussian Blur & Depth-Based Lens Blur with Adjustable Depth Thresholds"
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil", label="Input Image", value="https://i.ibb.co/fznz2b2b/hw3-q2.jpg"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.33, label="Foreground Depth Threshold"),
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.66, label="Middleground Depth Threshold")
],
outputs=[
gr.Image(type="pil", label="Segmentation-Based Blur"),
gr.Image(type="pil", label="Depth Map"),
gr.Image(type="pil", label="Depth-Based Lens Blur")
],
title=title,
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()
|