File size: 6,271 Bytes
d110ed4
 
e28b51d
 
 
d110ed4
e28b51d
 
 
 
 
d110ed4
e28b51d
 
d110ed4
e28b51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d110ed4
e28b51d
d110ed4
e28b51d
d110ed4
9b7d147
e28b51d
 
 
 
d110ed4
e28b51d
d110ed4
 
 
 
 
 
e28b51d
d110ed4
e28b51d
d110ed4
9b7d147
e28b51d
246a819
586457a
e28b51d
d110ed4
e28b51d
 
 
d110ed4
 
e28b51d
d110ed4
 
 
e28b51d
 
d110ed4
e28b51d
d110ed4
 
 
 
e18a03c
 
586457a
d110ed4
586457a
 
d110ed4
e28b51d
 
 
d110ed4
e28b51d
 
 
 
 
 
 
d110ed4
 
e28b51d
 
 
 
 
 
 
d110ed4
246a819
586457a
9b7d147
246a819
 
 
e28b51d
 
 
b634739
e28b51d
 
b634739
 
 
e28b51d
d110ed4
6ca0343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b1b3f
6ca0343
8d977b7
e28b51d
e7b1b3f
 
 
 
 
e28b51d
 
 
b634739
e28b51d
d110ed4
 
 
 
e28b51d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import cv2
import numpy as np
from PIL import Image, ImageFilter
import torch
import gradio as gr
from torchvision import transforms
from transformers import (
    AutoModelForImageSegmentation,
    DepthProImageProcessorFast,
    DepthProForDepthEstimation,
)

# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"

# -----------------------------
# Load Segmentation Model (RMBG-2.0 by briaai)
# -----------------------------
seg_model = AutoModelForImageSegmentation.from_pretrained(
    "briaai/RMBG-2.0", trust_remote_code=True
)
torch.set_float32_matmul_precision(["high", "highest"][0])
seg_model.to(device)
seg_model.eval()

# Define segmentation image size and transform
seg_image_size = (1024, 1024)
seg_transform = transforms.Compose([
    transforms.Resize(seg_image_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# -----------------------------
# Load Depth Estimation Model (DepthPro by Apple)
# -----------------------------
depth_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
depth_model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf")
depth_model.to(device)
depth_model.eval()

# -----------------------------
# Define the Segmentation-Based Blur Effect
# -----------------------------
def segmentation_blur_effect(input_image: Image.Image):
    imageResized = input_image.resize(seg_image_size)
    input_tensor = seg_transform(imageResized).unsqueeze(0).to(device)
    
    with torch.no_grad():
        preds = seg_model(input_tensor)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(imageResized.size)
    
    mask_np = np.array(mask.convert("L"))
    _, maskBinary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
    
    img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
    blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
    
    maskInv = cv2.bitwise_not(maskBinary)
    maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
    
    foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
    background = cv2.bitwise_and(blurredBg, maskInv3)
    
    finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
    finalImg_pil = Image.fromarray(finalImg)
    
    return finalImg_pil, mask

def lens_blur_effect(input_image: Image.Image, fg_threshold: float = 85, mg_threshold: float = 170):

    inputs = depth_processor(images=input_image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = depth_model(**inputs)
    post_processed_output = depth_processor.post_process_depth_estimation(
        outputs, target_sizes=[(input_image.height, input_image.width)]
    )
    depth = post_processed_output[0]["predicted_depth"]
    
    depth = (depth - depth.min()) / (depth.max() - depth.min())
    depth = depth * 255.
    depth = depth.detach().cpu().numpy()
    depth_map = depth.astype(np.uint8)
    depthImg = Image.fromarray(depth_map)
    
    img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    
    img_foreground = img.copy()  # No blur for foreground
    img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
    img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)

    print(depth_map)
    depth_map = depth_map.astype(np.float32) / depth_map.max()
    
    threshold1 = fg_threshold
    threshold2 = mg_threshold
    
    mask_fg = (depth_map < threshold1).astype(np.float32)
    mask_mg = ((depth_map >= threshold1) & (depth_map < threshold2)).astype(np.float32)
    mask_bg = (depth_map >= threshold2).astype(np.float32)
    
    mask_fg_3 = np.stack([mask_fg]*3, axis=-1)
    mask_mg_3 = np.stack([mask_mg]*3, axis=-1)
    mask_bg_3 = np.stack([mask_bg]*3, axis=-1)
    
    final_img = (img_foreground * mask_fg_3 +
                 img_middleground * mask_mg_3 +
                 img_background * mask_bg_3).astype(np.uint8)
    
    final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
    lensBlurImage = Image.fromarray(final_img_rgb)
    
    mask_fg_img = Image.fromarray((mask_fg * 255).astype(np.uint8))
    mask_mg_img = Image.fromarray((mask_mg * 255).astype(np.uint8))
    mask_bg_img = Image.fromarray((mask_bg * 255).astype(np.uint8))
    
    return depthImg, lensBlurImage, mask_fg_img, mask_mg_img, mask_bg_img

def process_image(input_image: Image.Image, fg_threshold: float, mg_threshold: float):

    seg_blur, seg_mask = segmentation_blur_effect(input_image)
    depth_map_img, lens_blur_img, mask_fg_img, mask_mg_img, mask_bg_img = lens_blur_effect(
        input_image, fg_threshold, mg_threshold
    )
    
    return (
        seg_blur,
        # seg_mask,
        depth_map_img,
        lens_blur_img,
        # mask_fg_img,
        # mask_mg_img,
        # mask_bg_img
    )

def update_preset(preset: str):
    presets = {
        "Preset 1": {
            "image_url": "https://i.ibb.co/fznz2b2b/hw3-q2.jpg",
            "fg_threshold": 0.33,
            "mg_threshold": 0.66
        },
        "Preset 2": {
            "image_url": "https://i.ibb.co/HLZGW7qH/q26.jpg",
            "fg_threshold": 0.2,
            "mg_threshold": 0.66
        }
    }
    preset_info = presets[preset]
    response = requests.get(preset_info["image_url"])
    image = Image.open(BytesIO(response.content)).convert("RGB")
    return image, preset_info["fg_threshold"], preset_info["mg_threshold"]


title = "Blur Effects on Segmentation-Based Gaussian Blur & Depth-Based Lens Blur with Adjustable Depth Thresholds"

demo = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil", label="Input Image", value="https://i.ibb.co/fznz2b2b/hw3-q2.jpg"),
        gr.Slider(minimum=0, maximum=1, step=0.01, value=0.33, label="Foreground Depth Threshold"),
        gr.Slider(minimum=0, maximum=1, step=0.01, value=0.66, label="Middleground Depth Threshold")
    ],
    outputs=[
        gr.Image(type="pil", label="Segmentation-Based Blur"),
        gr.Image(type="pil", label="Depth Map"),
        gr.Image(type="pil", label="Depth-Based Lens Blur")
    ],
    title=title,
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch()