test / streamlit_app.py
Ashkchamp's picture
Upload 2 files
0b17514 verified
# app.py
import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tempfile import NamedTemporaryFile
from typing import List, Tuple, Dict
import streamlit as st
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from lane_detection import YOLOVideoDetector, LABEL_MAP # Your detector + LABEL_MAP from detection.py
# ─────────────────────── Helper Functions ───────────────────────
def extract_four_points(js) -> List[Tuple[int,int]]:
"""
Return exactly four (x,y) clicks from streamlit_drawable_canvas JSON, or None.
"""
if not js or "objects" not in js:
return None
pts = []
for obj in js["objects"]:
if obj.get("type") in {"circle", "rect"}:
x = int(obj["left"] + obj.get("radius", 0))
y = int(obj["top"] + obj.get("radius", 0))
pts.append((x, y))
if len(pts) == 4:
return pts
return None
def draw_poly(img: np.ndarray, pts: List[Tuple[int,int]], color: Tuple[int,int,int]):
"""
Draw a closed polygon (4 points) on img in the specified color.
"""
cv2.polylines(img, [np.array(pts, np.int32)], True, color, 2, cv2.LINE_AA)
# ───────────────────────── Streamlit App ─────────────────────────
st.set_page_config(page_title="🚦 Multi‐Lane Congestion Demo", layout="wide")
st.title("🚦 Multi‐Lane Vehicle Congestion Demo")
# Initialize session state
if "num_lanes" not in st.session_state:
st.session_state.num_lanes = None
st.session_state.current_lane = 0
st.session_state.lanes = []
st.session_state.video_path = None
st.session_state.video_uploaded = False
# ─────────────────── Step 1: Choose Number of Lanes ───────────────────
if st.session_state.num_lanes is None:
n = st.number_input(
"How many lanes would you like to define? (1–8)",
min_value=1,
max_value=8,
value=2
)
if st.button("βœ” Set Number of Lanes"):
st.session_state.num_lanes = int(n)
st.session_state.lanes = [None] * st.session_state.num_lanes
st.stop()
# ─────────────────── Step 2: Upload a Video ───────────────────
if not st.session_state.video_uploaded:
uploaded = st.file_uploader(
"Upload video (formats: mp4, avi, mov, mkv)",
type=["mp4","avi","mov","mkv"]
)
if uploaded:
tmpfile = NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded.name)[1])
tmpfile.write(uploaded.read())
tmpfile.flush()
st.session_state.video_path = tmpfile.name
st.session_state.video_uploaded = True
else:
st.stop()
# ─────────────────── Step 3: Grab First Frame & Scale ───────────────────
cap = cv2.VideoCapture(st.session_state.video_path)
ret, first_frame = cap.read()
cap.release()
if not ret:
st.error("❌ Could not read the first frame of the video.")
st.stop()
frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
h_orig, w_orig = frame_rgb.shape[:2]
# If the frame is wider than 800 px, scale down
MAX_W = 800
if w_orig > MAX_W:
scale = MAX_W / w_orig
disp_w = MAX_W
disp_h = int(h_orig * scale)
frame_disp = cv2.resize(frame_rgb, (disp_w, disp_h), interpolation=cv2.INTER_AREA)
else:
scale = 1.0
disp_w, disp_h = w_orig, h_orig
frame_disp = frame_rgb.copy()
# ─────────────────── Step 4: Draw 4 Points Per Lane ───────────────────
colors = [
(0, 255, 0), (255, 0, 0), (0, 0, 255), (255, 255, 0),
(255, 0, 255), (0, 255, 255), (128, 255, 0), (255, 128, 0)
]
if st.session_state.current_lane < st.session_state.num_lanes:
idx = st.session_state.current_lane
color = colors[idx % len(colors)]
st.subheader(f"2️⃣ Click exactly 4 points for Lane #{idx+1}")
st.caption("Draw 4 small circles on the image, then press **Confirm Lane**.")
canvas = st_canvas(
fill_color="rgba(0,0,0,0)",
stroke_width=2,
stroke_color=f"#{color[2]:02X}{color[1]:02X}{color[0]:02X}",
background_image=Image.fromarray(frame_disp),
drawing_mode="point",
key=f"lane_canvas_{idx}",
height=disp_h,
width=disp_w,
update_streamlit=True
)
pts_scaled = extract_four_points(canvas.json_data)
if pts_scaled:
preview = frame_disp.copy()
draw_poly(preview, pts_scaled, color)
st.image(preview, caption=f"Preview – Lane {idx+1}", use_column_width=True)
if st.button(f"Confirm Lane {idx+1}"):
if pts_scaled and len(pts_scaled) == 4:
# Convert scaled points back to original resolution
orig_pts = [(int(x/scale), int(y/scale)) for (x,y) in pts_scaled]
st.session_state.lanes[idx] = orig_pts
st.session_state.current_lane += 1
else:
st.warning("⚠ Please click exactly 4 points.")
st.stop()
# ─────────────────── Step 5: Display All Lane Polygons ───────────────────
st.subheader("βœ… All lanes defined:")
confirm_img = frame_rgb.copy()
for i, poly in enumerate(st.session_state.lanes):
c = colors[i % len(colors)]
draw_poly(confirm_img, poly, c)
cv2.putText(
confirm_img, f"L{i+1}", (poly[0][0], poly[0][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, c, 2, cv2.LINE_AA
)
st.image(confirm_img, caption="All lane regions overlaid", use_column_width=True)
# ─────────────────── Step 6: Input Thresholds & Run Congestion Analysis ───────────────────
st.subheader("πŸ”§ Congestion Thresholds")
col1, col2 = st.columns(2)
with col1:
low_thresh = st.number_input(
"Green if PCE <",
min_value=0.0,
max_value=20.0,
value=3.5,
step=0.1,
format="%.1f",
help="Values below this will be colored green"
)
with col2:
high_thresh = st.number_input(
"Red if PCE >",
min_value=0.0,
max_value=20.0,
value=6.5,
step=0.1,
format="%.1f",
help="Values above this will be colored red"
)
st.caption("Values between green/red thresholds will be yellow.")
if st.button("πŸš€ Run Congestion Analysis"):
out_tmp = NamedTemporaryFile(delete=False, suffix=".mp4").name
regions: Dict[int, List[Tuple[int,int]]] = {
i: st.session_state.lanes[i] for i in range(st.session_state.num_lanes)
}
# Instantiate YOLOVideoDetector with 4 positional args
detector = YOLOVideoDetector(
"Weights/last.pt", # <-- replace with your actual .pt path
st.session_state.video_path,
out_tmp,
regions
)
# Assign optional attributes
detector.classes = list(LABEL_MAP.keys())
detector.conf = 0.35
detector.scale = 1.5
with st.spinner("Processing videoβ€”this may take a while..."):
df = detector.process_video()
st.success("βœ… Detection + annotation complete!")
# ───────────────── Compute Per-Lane PCE & Rolling Average ─────────────────
PCE = {
"auto": 0.8,
"bus": 4.0,
"car": 1.0,
"electric-rickshaw": 0.8,
"large-sized-truck": 4.5,
"medium-sized-truck": 3.5,
"motorbike": 0.5,
"small-sized-truck": 3.0,
}
for rid in regions.keys():
def lane_pce(row, rid=rid):
total = 0.0
for vt, factor in PCE.items():
coln = f"{vt}_{rid}"
cnt = row.get(coln, 0)
total += int(cnt) * factor
return total
df[f"PCE_lane{rid}"] = df.apply(lane_pce, axis=1)
df[f"PCE_lane{rid}_avg"] = df[f"PCE_lane{rid}"].rolling(window=5, min_periods=1).mean()
# ─────────────────── Lane-Wise Subplots with Smooth Line + Colored Markers ───────────────────
num_lanes = len(regions)
fig, axes = plt.subplots(num_lanes, 1, figsize=(10, 3 * num_lanes), sharex=True)
if num_lanes == 1:
axes = [axes]
for rid, ax in zip(regions.keys(), axes):
x = df["Frame Number"].values
y = df[f"PCE_lane{rid}_avg"].values
# 1) Plot a smooth continuous line in dark gray
ax.plot(x, y, color="gray", linewidth=1.2)
# 2) Overlay colored markers at each frame
colors_list = []
for yi in y:
if yi < low_thresh:
colors_list.append("green")
elif yi > high_thresh:
colors_list.append("red")
else:
colors_list.append("yellow")
ax.scatter(x, y, c=colors_list, s=20, edgecolors="black", linewidths=0.3)
ax.set_title(f"Lane {rid} PCE (rolling average)")
ax.set_ylabel("PCE")
ax.grid(alpha=0.3)
axes[-1].set_xlabel("Frame Number")
plt.tight_layout()
st.subheader("πŸ“Š Lane‐Wise Congestion Plots")
st.pyplot(fig)
# ─────────────────── Display Annotated Video & CSV Download ───────────────────
st.subheader("🎬 Annotated Output Video")
with open(out_tmp, "rb") as f:
st.video(f.read())
csv_bytes = df.to_csv(index=False).encode("utf-8")
st.download_button(
label="Download full counts + PCE CSV",
data=csv_bytes,
file_name="counts_and_pce.csv",
mime="text/csv"
)