File size: 17,889 Bytes
8fbc17c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import json
import os
import re
import pandas as pd
import random
import warnings
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
import gdown
import gradio as gr

warnings.filterwarnings("ignore")

load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

user_sessions = {}
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY environment variable is required.")

genai.configure(api_key=GOOGLE_API_KEY)

# β€”β€”β€” Load or fallback LeetCode data β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/"
FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0]
DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}"
OUTPUT_FILE = "leetcode_downloaded.xlsx"

try:
    print("Downloading LeetCode data...")
    gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False)
    LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
    print(f"Loaded {len(LEETCODE_DATA)} problems")
except Exception:
    print("Failed to download/read. Using fallback.")
    LEETCODE_DATA = pd.DataFrame([
        {"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array",
         "problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated",
         "problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray",
         "problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"},
        {"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum",
         "problem_link": "https://leetcode.com/problems/two-sum/"},
        {"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
         "problem_link": "https://leetcode.com/problems/add-two-numbers/"},
        {"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
         "problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
        {"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
         "problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
        {"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
         "problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
    ])

# β€”β€”β€” Helpers & Tools β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

QUESTION_TYPE_MAPPING = {
    "easy": "Easy", "Easy": "Easy",
    "medium": "Medium", "Medium": "Medium",
    "hard": "Hard", "Hard": "Hard"
}

def preprocess_query(query: str) -> str:
    for k, v in QUESTION_TYPE_MAPPING.items():
        query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE)
    query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
    query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
    query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE)
    query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip()
    return query

def get_daily_coding_question(query: str = "") -> dict:
    try:
        response = "**Daily Coding Questions**\n\n"
        
        m = re.search(r'Problem_(\d+)', query, re.IGNORECASE)
        if m:
            df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))]
            if not df.empty:
                p = df.iloc[0]
                response += (
                    f"**Problem {p['problem_no']}**\n"
                    f"Level: {p['problem_level']}\n"
                    f"Statement: {p['problem_statement']}\n"
                    f"Link: {p['problem_link']}\n\n"
                )
                return {"status": "success", "response": response}
            else:
                return {"status": "error", "response": "Problem not found"}
        
        if query.strip():
            df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
        else:
            df = LEETCODE_DATA

        easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy'])))
        medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium'])))
        hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard'])))

        response += "**Easy Questions**\n"
        for i, p in enumerate(easy_questions.itertuples(), 1):
            response += (
                f"{i}. Problem {p.problem_no}: {p.problem_statement}\n"
                f"   Level: {p.problem_level}\n"
                f"   Link: {p.problem_link}\n\n"
            )

        response += "**Medium Question**\n"
        for p in medium_questions.itertuples():
            response += (
                f"Problem {p.problem_no}: {p.problem_statement}\n"
                f"Level: {p.problem_level}\n"
                f"Link: {p.problem_link}\n\n"
            )

        response += "**Hard Question**\n"
        for p in hard_questions.itertuples():
            response += (
                f"Problem {p.problem_no}: {p.problem_statement}\n"
                f"Level: {p.problem_level}\n"
                f"Link: {p.problem_link}\n"
            )

        return {"status": "success", "response": response}
    except Exception as e:
        return {"status": "error", "response": f"Error: {e}"}

def fetch_interview_questions(query: str) -> dict:
    if not TAVILY_API_KEY:
        return {"status": "error", "response": "Tavily API key not configured"}
    
    if not query.strip() or query.lower() in ["a", "interview", "question", "questions"]:
        return {"status": "error", "response": "Please provide a specific topic for interview questions (e.g., 'Python', 'data structures', 'system design')."}
    
    try:
        tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=5)
        search_query = f"{query} interview questions -inurl:(signup | login)"
        print(f"Executing Tavily search for: {search_query}")
        
        results = tavily.invoke(search_query)
        print(f"Raw Tavily results: {results}")
        
        if not results or not isinstance(results, list) or len(results) == 0:
            return {"status": "success", "response": "No relevant interview questions found. Try a more specific topic or different keywords."}
        
        resp = "**Interview Questions Search Results for '{}':**\n\n".format(query)
        for i, r in enumerate(results, 1):
            if isinstance(r, dict):
                title = r.get('title', 'No title')
                url = r.get('url', 'No URL')
                content = r.get('content', '')
                content = content[:200] + '…' if len(content) > 200 else content or "No preview available"
                resp += f"{i}. **{title}**\n   URL: {url}\n   Preview: {content}\n\n"
            else:
                resp += f"{i}. {str(r)[:200]}{'…' if len(str(r)) > 200 else ''}\n\n"
        
        return {"status": "success", "response": resp}
    
    except Exception as e:
        print(f"Tavily search failed: {str(e)}")
        return {"status": "error", "response": f"Search failed: {str(e)}"}

def simulate_mock_interview(query: str, user_id: str = "default") -> dict:
    qtype = "mixed"
    if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
    if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
    
    if "interview question" in query.lower() and qtype == "mixed":
        qtype = "HR"
    
    if qtype == "HR":
        hr_questions = [
            "Tell me about yourself.",
            "What is your greatest weakness?",
            "Describe a challenge you overcame.",
            "Why do you want to work here?",
            "Where do you see yourself in 5 years?",
            "Why are you leaving your current job?",
            "Describe a time when you had to work with a difficult team member.",
            "What are your salary expectations?",
            "Tell me about a time you failed.",
            "What motivates you?",
            "How do you handle stress and pressure?",
            "Describe your leadership style."
        ]
        q = random.choice(hr_questions)
        return {"status": "success", "response": (
            f"**Mock Interview (HR/Behavioral)**\n\n**Question:** {q}\n\nπŸ’‘ **Tips:**\n"
            f"- Use the STAR method (Situation, Task, Action, Result)\n"
            f"- Provide specific examples from your experience\n"
            f"- Keep your answer concise but detailed\n\n**Your turn to answer!**"
        )}
    else:
        p = LEETCODE_DATA.sample(1).iloc[0]
        return {"status": "success", "response": (
            f"**Mock Interview (Technical)**\n\n**Problem:** {p['problem_statement'].title()}\n"
            f"**Difficulty:** {p['problem_level']}\n**Link:** {p['problem_link']}\n\nπŸ’‘ **Tips:**\n"
            f"- Think out loud as you solve\n"
            f"- Ask clarifying questions\n"
            f"- Discuss time/space complexity\n\n**Explain your approach!**"
        )}

# β€”β€”β€” The Enhanced InterviewPrepAgent β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

class InterviewPrepAgent:
    def __init__(self):
        self.model = genai.GenerativeModel('gemini-1.5-flash')
        self.tools = {
            "get_daily_coding_question": get_daily_coding_question,
            "fetch_interview_questions": fetch_interview_questions,
            "simulate_mock_interview": simulate_mock_interview
        }
        self.instruction_text = """
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.

Available tools:
1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions
2. fetch_interview_questions - For searching interview questions on specific topics
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)

Instructions:
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus

Respond ONLY with valid JSON in this exact format:
{"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}}

User Query: {query}
"""

    def _classify_intent(self, query: str) -> tuple[str, dict]:
        query_lower = query.lower()
        
        # Prioritize HR/behavioral for explicit mentions
        if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]):
            return "simulate_mock_interview", {"query": query, "user_id": "default"}
        
        # Handle mock interview or simulation requests
        if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
            return "simulate_mock_interview", {"query": query, "user_id": "default"}
        
        # Handle coding-related queries
        if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
            problem_match = re.search(r'problem\s*(\d+)', query_lower)
            if problem_match:
                return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
            
            if "easy" in query_lower:
                return "get_daily_coding_question", {"query": "Easy"}
            elif "medium" in query_lower:
                return "get_daily_coding_question", {"query": "Medium"}
            elif "hard" in query_lower:
                return "get_daily_coding_question", {"query": "Hard"}
            
            return "get_daily_coding_question", {"query": ""}
        
        # Handle topic-specific interview questions
        if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
           "interview" in query_lower:
            return "fetch_interview_questions", {"query": query}
        
        # Fallback to LLM classification
        try:
            prompt = self.instruction_text.format(query=query)
            response = self.model.generate_content(prompt)
            result = json.loads(response.text.strip())
            tool_name = result.get("tool")
            args = result.get("args", {})
            return tool_name, args
        except Exception as e:
            print(f"LLM classification failed: {e}")
            return "get_daily_coding_question", {"query": ""}

    def process_query(self, query: str, user_id: str = "default", session_id: str = "default") -> str:
        if not GOOGLE_API_KEY:
            return "Error: Google API not configured."
        
        session_key = f"{user_id}_{session_id}"
        user_sessions.setdefault(session_key, {"history": []})

        tool_name, args = self._classify_intent(query)
        
        if tool_name not in self.tools:
            return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic"

        result = self.tools[tool_name](**args)
        
        user_sessions[session_key]["history"].append({
            "query": query, 
            "response": result["response"]
        })
        
        return result["response"]

# β€”β€”β€” Gradio Interface β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

agent = InterviewPrepAgent()

def chat_interface(message, history):
    """Handle chat messages and return response"""
    try:
        # Preprocess the query
        processed_query = preprocess_query(message)
        
        # Get response from agent
        response = agent.process_query(processed_query, user_id="gradio_user", session_id="session_1")
        
        return response
    except Exception as e:
        return f"Sorry, I encountered an error: {str(e)}"

def create_examples():
    """Create example messages for the interface"""
    return [
        ["Give me a daily coding question"],
        ["I want to practice mock interview"],
        ["Find interview questions for Python"],
        ["Give me HR interview questions"],
        ["Technical mock interview"],
        ["Search interview questions for data structures"],
    ]

# Create the Gradio interface
with gr.Blocks(
    title="Interview Prep Assistant",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 900px !important;
    }
    .chat-message {
        font-size: 14px !important;
    }
    """
) as interface:
    
    gr.Markdown(
        """
        # 🎯 Interview Prep Assistant
        
        Your AI-powered interview preparation companion! I can help you with:
        
        - **Daily Coding Questions** - Get LeetCode problems for practice
        - **Mock Interviews** - Practice HR/behavioral or technical interviews
        - **Interview Questions** - Search for specific topic-based interview questions
        
        Just type your request below and I'll help you prepare for your next interview!
        """
    )
    
    # Create the chat interface
    chatbot = gr.ChatInterface(
        fn=chat_interface,
        title="Chat with Interview Prep Assistant",
        description="Ask me for coding questions, mock interviews, or interview preparation resources!",
        examples=create_examples(),
        textbox=gr.Textbox(
            placeholder="Type your message here... (e.g., 'Give me a daily coding question')",
            container=False,
            scale=7
        ),
        chatbot=gr.Chatbot(
            height=500,
            show_label=False,
            container=True
        )
    )
    
    # Add footer with information
    gr.Markdown(
        """
        ---
        ### πŸ’‘ Tips for using the Interview Prep Assistant:
        
        - **For coding practice**: "daily coding question", "easy coding problem", "leetcode problem 1"
        - **For mock interviews**: "mock interview", "HR interview", "technical interview"
        - **For topic research**: "Python interview questions", "system design interview questions"
        
        ### πŸ“Š System Status:
        - Google API: βœ… Configured
        - LeetCode Problems: {} loaded
        - Tavily Search: {} Available
        """.format(
            len(LEETCODE_DATA),
            "βœ…" if TAVILY_API_KEY else "❌"
        )
    )

# Launch the interface
if __name__ == "__main__":
    interface.launch(
        # server_name="0.0.0.0",
        server_port=8000,
        share=False,
        show_error=True,
        quiet=False
    )