Spaces:
Sleeping
Sleeping
File size: 19,235 Bytes
ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee 11a2bf7 ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee ff8f2b3 ddbcbee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import json
import os
import re
import pandas as pd
import random
from typing import Dict, Optional, Any
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
# Load environment variables
load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Configure Google AI
genai.configure(api_key=GOOGLE_API_KEY)
# Load LeetCode data
OUTPUT_FILE = "leetcode_downloaded.xlsx"
try:
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
print(f"Loaded {len(LEETCODE_DATA)} LeetCode problems from local file.")
except FileNotFoundError:
print("Warning: LeetCode data file not found. Some features may not work.")
LEETCODE_DATA = pd.DataFrame()
# User sessions for mock interviews
user_sessions = {}
# βββ Pydantic Models ββββββββββββββββββββββββββββββββββββββββββ
class ChatRequest(BaseModel):
user_id: str = "default"
session_id: str = "default"
message: str
class ChatResponse(BaseModel):
status: str
response: str
session_id: str
class HealthResponse(BaseModel):
status: str
google_api_configured: bool
leetcode_problems_loaded: int
tavily_search_available: bool
# βββ Utility Functions ββββββββββββββββββββββββββββββββββββββββββ
def preprocess_query(query: str) -> str:
"""Preprocess user query for better understanding"""
return query.strip()
# βββ Tool 1: Get Daily Coding Question ββββββββββββββββββββββββββ
def get_daily_coding_question(query=""):
"""Get 3 random coding questions (one from each difficulty level)"""
if LEETCODE_DATA.empty:
return {"status": "error", "response": "LeetCode data not available. Please check the data file."}
response = "Here are your coding challenges for today:\n\n"
problem_match = re.search(r'problem[\s_]*(\d+)', query, re.IGNORECASE)
if problem_match:
problem_no = int(problem_match.group(1))
specific_problem = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == problem_no]
if not specific_problem.empty:
p = specific_problem.iloc[0]
response = f"**Problem {p['problem_no']}: {p['problem_statement']}**\n"
response += f"**Difficulty**: {p['problem_level']}\n"
response += f"**Link**: {p['problem_link']}\n\n"
response += "Good luck with this problem!"
return {"status": "success", "response": response}
else:
return {"status": "error", "response": "Problem not found. Try a different number!"}
easy = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Easy']
medium = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Medium']
hard = LEETCODE_DATA[LEETCODE_DATA['problem_level'] == 'Hard']
for label, df in [("π’ Easy", easy), ("π‘ Medium", medium), ("π΄ Hard", hard)]:
if not df.empty:
q = df.sample(1).iloc[0]
response += f"**{label} Challenge**\n"
response += f"Problem {q['problem_no']}: {q['problem_statement']}\n"
response += f"Link: {q['problem_link']}\n\n"
response += "Choose one that matches your skill level and start coding!"
return {"status": "success", "response": response}
# βββ Tool 2: Fetch Interview Questions ββββββββββββββββββββββββββ
def fetch_interview_questions(query):
if not TAVILY_API_KEY:
return {"status": "error", "response": "Tavily API key not configured."}
try:
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=3)
search_response = tavily.invoke(f"{query} interview questions")
# Extract the results list from the response dictionary
results = search_response.get("results", []) if isinstance(search_response, dict) else search_response
if not results:
return {"status": "success", "response": f"No results found for '{query}' interview questions."}
search_results = f"Here are the top 3 resources for {query} interview questions:\n\n"
for i, res in enumerate(results[:3], 1):
t = res.get('title', 'No title')
u = res.get('url', 'No URL')
c = res.get('content', '')
snippet = c[:200] + '...' if len(c) > 200 else c
search_results += f"**{i}. {t}**\nURL: {u}\nPreview: {snippet}\n\n"
model = genai.GenerativeModel('gemini-1.5-flash')
guidance = model.generate_content(f"""
Based on the topic '{query}', provide practical advice on how to prepare for and tackle interview questions in this area.
Include:
1. Key concepts to focus on
2. Common question types
3. How to structure answers
4. Tips for success
Keep it concise and actionable.
""").text
final = search_results + "\n**π‘ How to Tackle These Interviews:**\n\n" + guidance
return {"status": "success", "response": final}
except Exception as e:
return {"status": "error", "response": f"Error fetching interview questions: {str(e)}"}
# βββ Tool 3: Simulate Mock Interview ββββββββββββββββββββββββββ
def simulate_mock_interview(query, user_id="default", session_id="default"):
session_key = f"mock_{user_id}_{session_id}"
if session_key not in user_sessions:
user_sessions[session_key] = {
"stage": "tech_stack",
"tech_stack": "",
"questions_asked": [],
"answers_given": [],
"current_question": "",
"question_count": 0,
"difficulty": "medium",
"feedback_history": []
}
session = user_sessions[session_key]
try:
model = genai.GenerativeModel('gemini-1.5-flash')
# Tech stack collection stage
if session["stage"] == "tech_stack":
session["stage"] = "waiting_tech_stack"
return {"status": "success", "response": (
"Welcome to your mock interview! π―\n\n"
"Please tell me about your tech stack (e.g., Python, React, multi-agent systems) "
"or the role you're preparing for (e.g., software engineer, ML engineer)."
)}
elif session["stage"] == "waiting_tech_stack":
session["tech_stack"] = query
session["stage"] = "interviewing"
difficulty_options = " (easy/medium/hard)"
q = model.generate_content(f"""
Generate a relevant interview question for tech stack: {query}
Ensure it tests technical knowledge and problem-solving.
Keep it concise and return only the question.
""").text.strip()
session.update({
"current_question": q,
"questions_asked": [q],
"question_count": 1
})
return {"status": "success", "response": (
f"Great! Based on your tech stack ({query}), let's start your mock interview.\n\n"
f"**Question 1:** {q}\n"
f"Set difficulty level{difficulty_options} or proceed. Type 'quit' to end and get your summary."
)}
elif session["stage"] == "interviewing":
if query.lower().strip() in ["easy", "medium", "hard"]:
session["difficulty"] = query.lower().strip()
return {"status": "success", "response": (
f"Difficulty set to {session['difficulty']}. Let's continue!\n\n"
f"**Question {session['question_count']}:** {session['current_question']}\n\n"
"Take your time to answer. Type 'quit' to end and get your summary."
)}
if query.lower().strip() == "quit":
return end_mock_interview(session_key)
# Store answer and provide feedback
session["answers_given"].append(query)
feedback = model.generate_content(f"""
Question: {session['current_question']}
Answer: {query}
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Provide concise, constructive feedback:
- What went well
- Areas to improve
- Missing points or better approach
- Suggested follow-up topic
""").text.strip()
session["feedback_history"].append(feedback)
# Generate next question with context
next_q = model.generate_content(f"""
Tech stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Previous questions: {session['questions_asked']}
Follow-up topic suggestion: {feedback.split('\n')[-1] if feedback else ''}
Generate a new, relevant interview question unseen before.
Ensure it aligns with the tech stack and difficulty.
Return only the question.
""").text.strip()
session["questions_asked"].append(next_q)
session["current_question"] = next_q
session["question_count"] += 1
return {"status": "success", "response": (
f"**Feedback on your previous answer:**\n{feedback}\n\n"
f"**Question {session['question_count']}:** {next_q}\n\n"
"Type 'quit' to end the interview and get your summary, or set a new difficulty (easy/medium/hard)."
)}
except Exception as e:
return {"status": "error", "response": f"Error in mock interview: {str(e)}"}
def end_mock_interview(session_key):
session = user_sessions[session_key]
try:
model = genai.GenerativeModel('gemini-1.5-flash')
summary = model.generate_content(f"""
Mock Interview Summary:
Tech Stack: {session['tech_stack']}
Difficulty: {session['difficulty']}
Questions Asked: {session['questions_asked']}
Answers Given: {session['answers_given']}
Feedback History: {session['feedback_history']}
Provide a concise overall assessment:
- Strengths
- Areas for improvement
- Key recommendations
- Common mistakes to avoid
""").text.strip()
# Store session data before deletion for response
tech_stack = session['tech_stack']
difficulty = session['difficulty']
questions_count = len(session['questions_asked'])
del user_sessions[session_key]
return {"status": "success", "response": (
"π― **Mock Interview Complete!**\n\n"
f"**Interview Summary:**\n"
f"- Tech Stack: {tech_stack}\n"
f"- Difficulty: {difficulty}\n"
f"- Questions Asked: {questions_count}\n\n"
"**Overall Assessment:**\n" + summary + "\n\n"
"Great jobβuse this feedback to level up! πͺ"
)}
except Exception as e:
return {"status": "error", "response": f"Error generating interview summary: {str(e)}"}
# βββ Main Agent Class ββββββββββββββββββββββββββββββββββββββββββ
class InterviewPrepAgent:
def __init__(self):
if GOOGLE_API_KEY:
self.model = genai.GenerativeModel('gemini-1.5-flash')
else:
self.model = None
self.tools = {
"get_daily_coding_question": get_daily_coding_question,
"fetch_interview_questions": fetch_interview_questions,
"simulate_mock_interview": simulate_mock_interview
}
def classify_query(self, query):
if not self.model:
# Fallback classification without AI
query_lower = query.lower()
if any(keyword in query_lower for keyword in ['mock', 'interview', 'simulate', 'practice']):
return "simulate_mock_interview", {"query": query}
elif any(keyword in query_lower for keyword in ['coding', 'leetcode', 'daily', 'problem']):
return "get_daily_coding_question", {"query": query}
else:
return "fetch_interview_questions", {"query": query}
try:
prompt = f"""
Analyze this user query and determine which tool to use:
Query: "{query}"
Tools:
1. get_daily_coding_question β for coding problems, leetcode, daily challenges
2. fetch_interview_questions β for topic-specific interview question resources
3. simulate_mock_interview β for mock interview practice or behavioral interviews
Rules:
- If query mentions 'mock', 'interview', 'simulate', or 'practice', choose simulate_mock_interview
- If query mentions 'coding', 'leetcode', 'daily', 'problem', choose get_daily_coding_question
- If query asks for interview questions on a specific technology (like 'Python interview questions'), choose fetch_interview_questions
- If unclear, default to simulate_mock_interview
Respond with JSON: {{"tool": "tool_name", "args": {{"query": "query_text"}}}}
"""
resp = self.model.generate_content(prompt).text.strip()
if resp.startswith("```json"):
resp = resp.replace("```json", "").replace("```", "").strip()
j = json.loads(resp)
return j.get("tool"), j.get("args", {})
except Exception as e:
# Fallback to simple classification
return "simulate_mock_interview", {"query": query}
def process_query(self, query, user_id="default", session_id="default"):
tool, args = self.classify_query(query)
if tool not in self.tools:
return {"status": "error", "response": "Sorry, I didn't get that. Ask for coding practice, interview questions, or mock interview!"}
if tool == "simulate_mock_interview":
result = self.tools[tool](args.get("query", query), user_id, session_id)
else:
result = self.tools[tool](args.get("query", query))
return result.get("response", "Something went wrong, try again.")
# βββ FastAPI Application ββββββββββββββββββββββββββββββββββββββ
app = FastAPI(title="Interview Prep API", version="2.0.0", description="AI-powered interview practice companion")
# Initialize the agent
agent = InterviewPrepAgent()
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Process a chat message and return a response
"""
try:
query = preprocess_query(request.message)
response = agent.process_query(query, request.user_id, request.session_id)
return ChatResponse(
status="success",
response=response,
session_id=request.session_id
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing chat: {str(e)}")
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""
Health check endpoint
"""
return HealthResponse(
status="healthy",
google_api_configured=bool(GOOGLE_API_KEY),
leetcode_problems_loaded=len(LEETCODE_DATA),
tavily_search_available=bool(TAVILY_API_KEY)
)
@app.get("/")
async def root():
"""
Root endpoint with API information
"""
return {
"message": "Interview Prep API v2.0.0",
"description": "AI-powered interview practice companion",
"endpoints": {
"/chat": "POST - Send chat messages",
"/health": "GET - Health check",
"/docs": "GET - API documentation",
"/examples": "GET - Example requests"
}
}
@app.get("/examples")
async def get_examples():
"""
Get example requests for the API
"""
return {
"examples": [
{
"description": "Get daily coding questions",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Give me daily coding questions"
}
},
{
"description": "Start a mock interview",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Start a mock interview"
}
},
{
"description": "Get Python interview questions",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Python interview questions"
}
},
{
"description": "Get specific LeetCode problem",
"request": {
"user_id": "user123",
"session_id": "session456",
"message": "Show me problem 1"
}
}
]
}
@app.delete("/session/{user_id}/{session_id}")
async def clear_session(user_id: str, session_id: str):
"""
Clear a specific user session
"""
session_key = f"mock_{user_id}_{session_id}"
if session_key in user_sessions:
del user_sessions[session_key]
return {"message": f"Session {session_id} for user {user_id} cleared successfully"}
else:
raise HTTPException(status_code=404, detail="Session not found")
@app.get("/sessions/{user_id}")
async def get_user_sessions(user_id: str):
"""
Get all sessions for a specific user
"""
user_session_keys = [key for key in user_sessions.keys() if key.startswith(f"mock_{user_id}_")]
sessions = []
for key in user_session_keys:
session_id = key.split("_")[-1]
session_data = user_sessions[key]
sessions.append({
"session_id": session_id,
"stage": session_data.get("stage"),
"tech_stack": session_data.get("tech_stack"),
"question_count": session_data.get("question_count", 0),
"difficulty": session_data.get("difficulty")
})
return {"user_id": user_id, "sessions": sessions}
if __name__ == "__main__":
import uvicorn
print("Starting Interview Prep FastAPI server...")
print(f"Google API configured: {bool(GOOGLE_API_KEY)}")
print(f"LeetCode problems loaded: {len(LEETCODE_DATA)}")
print(f"Tavily search available: {bool(TAVILY_API_KEY)}")
uvicorn.run(app, host="0.0.0.0", port=8000, reload=True) |