n0v33n
Updated tools
eb92ba2
raw
history blame
15.7 kB
import json
import os
import re
import pandas as pd
import random
import warnings
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from dotenv import load_dotenv
from langchain_tavily import TavilySearch
import google.generativeai as genai
import gdown
warnings.filterwarnings("ignore")
load_dotenv()
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
user_sessions = {}
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable is required.")
genai.configure(api_key=GOOGLE_API_KEY)
# β€”β€”β€” Load or fallback LeetCode data β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
GOOGLE_SHEET_URL = "https://docs.google.com/spreadsheets/d/1KK9Mnm15hV3ALJo-quJndftWfaujJ7K2_zHMCTo5mGE/"
FILE_ID = GOOGLE_SHEET_URL.split("/d/")[1].split("/")[0]
DOWNLOAD_URL = f"https://drive.google.com/uc?export=download&id={FILE_ID}"
OUTPUT_FILE = "leetcode_downloaded.xlsx"
try:
print("Downloading LeetCode data...")
gdown.download(DOWNLOAD_URL, OUTPUT_FILE, quiet=False)
LEETCODE_DATA = pd.read_excel(OUTPUT_FILE)
print(f"Loaded {len(LEETCODE_DATA)} problems")
except Exception:
print("Failed to download/read. Using fallback.")
LEETCODE_DATA = pd.DataFrame([
{"problem_no": 3151, "problem_level": "Easy", "problem_statement": "special array",
"problem_link": "https://leetcode.com/problems/special-array-i/?envType=daily-question&envId=2025-06-01"},
{"problem_no": 1752, "problem_level": "Easy", "problem_statement": "check if array is sorted and rotated",
"problem_link": "https://leetcode.com/problems/check-if-array-is-sorted-and-rotated/?envType=daily-question&envId=2025-06-01"},
{"problem_no": 3105, "problem_level": "Easy", "problem_statement": "longest strictly increasing or strictly decreasing subarray",
"problem_link": "https://leetcode.com/problems/longest-strictly-increasing-or-strictly-decreasing-subarray/?envType=daily-question&envId=2025-06-01"},
{"problem_no": 1, "problem_level": "Easy", "problem_statement": "two sum",
"problem_link": "https://leetcode.com/problems/two-sum/"},
{"problem_no": 2, "problem_level": "Medium", "problem_statement": "add two numbers",
"problem_link": "https://leetcode.com/problems/add-two-numbers/"},
{"problem_no": 3, "problem_level": "Medium", "problem_statement": "longest substring without repeating characters",
"problem_link": "https://leetcode.com/problems/longest-substring-without-repeating-characters/"},
{"problem_no": 4, "problem_level": "Hard", "problem_statement": "median of two sorted arrays",
"problem_link": "https://leetcode.com/problems/median-of-two-sorted-arrays/"},
{"problem_no": 5, "problem_level": "Medium", "problem_statement": "longest palindromic substring",
"problem_link": "https://leetcode.com/problems/longest-palindromic-substring/"}
])
# β€”β€”β€” Helpers & Tools β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
QUESTION_TYPE_MAPPING = {
"easy": "Easy", "Easy": "Easy",
"medium": "Medium", "Medium": "Medium",
"hard": "Hard", "Hard": "Hard"
}
def preprocess_query(query: str) -> str:
for k, v in QUESTION_TYPE_MAPPING.items():
query = re.sub(rf'\b{k}\b', v, query, flags=re.IGNORECASE)
query = re.sub(r'\bproblem\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
query = re.sub(r'\bquestion\s*(\d+)', r'Problem_\1', query, flags=re.IGNORECASE)
query = re.sub(r'\b(find|search)\s+interview\s+questions\s+for\s+', '', query, flags=re.IGNORECASE)
query = re.sub(r'\binterview\s+questions\b', '', query, flags=re.IGNORECASE).strip()
return query
def get_daily_coding_question(query: str = "") -> dict:
try:
response = "**Daily Coding Questions**\n\n"
m = re.search(r'Problem_(\d+)', query, re.IGNORECASE)
if m:
df = LEETCODE_DATA[LEETCODE_DATA['problem_no'] == int(m.group(1))]
if not df.empty:
p = df.iloc[0]
response += (
f"**Problem {p['problem_no']}**\n"
f"Level: {p['problem_level']}\n"
f"Statement: {p['problem_statement']}\n"
f"Link: {p['problem_link']}\n\n"
)
return {"status": "success", "response": response}
else:
return {"status": "error", "response": "Problem not found"}
if query.strip():
df = LEETCODE_DATA[LEETCODE_DATA['problem_statement'].str.contains(query, case=False, na=False)]
else:
df = LEETCODE_DATA
easy_questions = df[df['problem_level'] == 'Easy'].sample(min(3, len(df[df['problem_level'] == 'Easy'])))
medium_questions = df[df['problem_level'] == 'Medium'].sample(min(1, len(df[df['problem_level'] == 'Medium'])))
hard_questions = df[df['problem_level'] == 'Hard'].sample(min(1, len(df[df['problem_level'] == 'Hard'])))
response += "**Easy Questions**\n"
for i, p in enumerate(easy_questions.itertuples(), 1):
response += (
f"{i}. Problem {p.problem_no}: {p.problem_statement}\n"
f" Level: {p.problem_level}\n"
f" Link: {p.problem_link}\n\n"
)
response += "**Medium Question**\n"
for p in medium_questions.itertuples():
response += (
f"Problem {p.problem_no}: {p.problem_statement}\n"
f"Level: {p.problem_level}\n"
f"Link: {p.problem_link}\n\n"
)
response += "**Hard Question**\n"
for p in hard_questions.itertuples():
response += (
f"Problem {p.problem_no}: {p.problem_statement}\n"
f"Level: {p.problem_level}\n"
f"Link: {p.problem_link}\n"
)
return {"status": "success", "response": response}
except Exception as e:
return {"status": "error", "response": f"Error: {e}"}
def fetch_interview_questions(query: str) -> dict:
if not TAVILY_API_KEY:
return {"status": "error", "response": "Tavily API key not configured"}
if not query.strip() or query.lower() in ["a", "interview", "question", "questions"]:
return {"status": "error", "response": "Please provide a specific topic for interview questions (e.g., 'Python', 'data structures', 'system design')."}
try:
tavily = TavilySearch(api_key=TAVILY_API_KEY, max_results=5)
search_query = f"{query} interview questions -inurl:(signup | login)"
print(f"Executing Tavily search for: {search_query}")
results = tavily.invoke(search_query)
print(f"Raw Tavily results: {results}")
if not results or not isinstance(results, list) or len(results) == 0:
return {"status": "success", "response": "No relevant interview questions found. Try a more specific topic or different keywords."}
resp = "**Interview Questions Search Results for '{}':**\n\n".format(query)
for i, r in enumerate(results, 1):
if isinstance(r, dict):
title = r.get('title', 'No title')
url = r.get('url', 'No URL')
content = r.get('content', '')
content = content[:200] + '…' if len(content) > 200 else content or "No preview available"
resp += f"{i}. **{title}**\n URL: {url}\n Preview: {content}\n\n"
else:
resp += f"{i}. {str(r)[:200]}{'…' if len(str(r)) > 200 else ''}\n\n"
return {"status": "success", "response": resp}
except Exception as e:
print(f"Tavily search failed: {str(e)}")
return {"status": "error", "response": f"Search failed: {str(e)}"}
def simulate_mock_interview(query: str, user_id: str = "default") -> dict:
qtype = "mixed"
if re.search(r'HR|Behavioral|hr|behavioral', query, re.IGNORECASE): qtype = "HR"
if re.search(r'Technical|System Design|technical|coding', query, re.IGNORECASE): qtype = "Technical"
if "interview question" in query.lower() and qtype == "mixed":
qtype = "HR"
if qtype == "HR":
hr_questions = [
"Tell me about yourself.",
"What is your greatest weakness?",
"Describe a challenge you overcame.",
"Why do you want to work here?",
"Where do you see yourself in 5 years?",
"Why are you leaving your current job?",
"Describe a time when you had to work with a difficult team member.",
"What are your salary expectations?",
"Tell me about a time you failed.",
"What motivates you?",
"How do you handle stress and pressure?",
"Describe your leadership style."
]
q = random.choice(hr_questions)
return {"status": "success", "response": (
f"**Mock Interview (HR/Behavioral)**\n\n**Question:** {q}\n\nπŸ’‘ **Tips:**\n"
f"- Use the STAR method (Situation, Task, Action, Result)\n"
f"- Provide specific examples from your experience\n"
f"- Keep your answer concise but detailed\n\n**Your turn to answer!**"
)}
else:
p = LEETCODE_DATA.sample(1).iloc[0]
return {"status": "success", "response": (
f"**Mock Interview (Technical)**\n\n**Problem:** {p['problem_statement'].title()}\n"
f"**Difficulty:** {p['problem_level']}\n**Link:** {p['problem_link']}\n\nπŸ’‘ **Tips:**\n"
f"- Think out loud as you solve\n"
f"- Ask clarifying questions\n"
f"- Discuss time/space complexity\n\n**Explain your approach!**"
)}
# β€”β€”β€” The Enhanced InterviewPrepAgent β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
class InterviewPrepAgent:
def __init__(self):
self.model = genai.GenerativeModel('gemini-1.5-flash')
self.tools = {
"get_daily_coding_question": get_daily_coding_question,
"fetch_interview_questions": fetch_interview_questions,
"simulate_mock_interview": simulate_mock_interview
}
self.instruction_text = """
You are an interview preparation assistant. Analyze the user's query and determine which tool to use.
Available tools:
1. get_daily_coding_question - For coding practice, LeetCode problems, daily questions
2. fetch_interview_questions - For searching interview questions on specific topics
3. simulate_mock_interview - For mock interview practice (HR/behavioral or technical)
Instructions:
- If user asks for coding questions, daily questions, LeetCode problems, practice problems -> use get_daily_coding_question
- If user asks for interview questions on specific topics (e.g., Python, data structures) without "mock" or "simulate" -> use fetch_interview_questions
- If user asks for mock interview, interview simulation, practice interview, or HR/behavioral questions -> use simulate_mock_interview
- If user explicitly mentions "HR" or "behavioral" -> use simulate_mock_interview with HR focus
Respond ONLY with valid JSON in this exact format:
{"tool": "tool_name", "args": {"param1": "value1", "param2": "value2"}}
User Query: {query}
"""
def _classify_intent(self, query: str) -> tuple[str, dict]:
query_lower = query.lower()
# Prioritize HR/behavioral for explicit mentions
if any(keyword in query_lower for keyword in ["hr", "behavioral", "give hr questions", "give behavioral questions"]):
return "simulate_mock_interview", {"query": query, "user_id": "default"}
# Handle mock interview or simulation requests
if any(keyword in query_lower for keyword in ["mock interview", "practice interview", "interview simulation", "simulate_mock_interview"]):
return "simulate_mock_interview", {"query": query, "user_id": "default"}
# Handle coding-related queries
if any(keyword in query_lower for keyword in ["daily", "coding question", "leetcode", "practice problem", "coding practice"]):
problem_match = re.search(r'problem\s*(\d+)', query_lower)
if problem_match:
return "get_daily_coding_question", {"query": f"Problem_{problem_match.group(1)}"}
if "easy" in query_lower:
return "get_daily_coding_question", {"query": "Easy"}
elif "medium" in query_lower:
return "get_daily_coding_question", {"query": "Medium"}
elif "hard" in query_lower:
return "get_daily_coding_question", {"query": "Hard"}
return "get_daily_coding_question", {"query": ""}
# Handle topic-specific interview questions
if any(keyword in query_lower for keyword in ["search interview questions", "find interview questions", "interview prep resources"]) or \
"interview" in query_lower:
return "fetch_interview_questions", {"query": query}
# Fallback to LLM classification
try:
prompt = self.instruction_text.format(query=query)
response = self.model.generate_content(prompt)
result = json.loads(response.text.strip())
tool_name = result.get("tool")
args = result.get("args", {})
return tool_name, args
except Exception as e:
print(f"LLM classification failed: {e}")
return "get_daily_coding_question", {"query": ""}
def process_query(self, query: str, user_id: str, session_id: str) -> str:
if not GOOGLE_API_KEY:
return "Error: Google API not configured."
session_key = f"{user_id}_{session_id}"
user_sessions.setdefault(session_key, {"history": []})
tool_name, args = self._classify_intent(query)
if tool_name not in self.tools:
return f"I couldn't understand your request. Please try asking for:\n- Daily coding question\n- Mock interview\n- Interview questions for a specific topic"
result = self.tools[tool_name](**args)
user_sessions[session_key]["history"].append({
"query": query,
"response": result["response"]
})
return result["response"]
# β€”β€”β€” FastAPI Setup β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
app = FastAPI(title="Interview Prep API", version="2.0.0")
agent = InterviewPrepAgent()
class ChatRequest(BaseModel):
user_id: str
session_id: str
question: str
class ChatResponse(BaseModel):
session_id: str
answer: str
@app.post("/chat", response_model=ChatResponse)
async def chat(req: ChatRequest):
q = preprocess_query(req.question)
ans = agent.process_query(q, req.user_id, req.session_id)
return ChatResponse(session_id=req.session_id, answer=ans)
@app.get("/healthz")
def health():
status = {"status": "ok", "google_api": bool(GOOGLE_API_KEY),
"leetcode_count": len(LEETCODE_DATA),
"tavily": bool(TAVILY_API_KEY)}
return status
@app.get("/")
def root():
return {"message": "Interview Prep API v2", "endpoints": ["/chat", "/healthz"]}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)