oKen38461's picture
初回コミットに基づくファイルの追加
ac7cda5
import numpy as np
import cv2
from ..utils.load_model import load_model
def intersect(box_a, box_b):
"""We resize both arrays to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (array) bounding boxes, Shape: [A,4].
box_b: (array) bounding boxes, Shape: [B,4].
Return:
(array) intersection area, Shape: [A,B].
"""
A = box_a.shape[0]
B = box_b.shape[0]
max_xy = np.minimum(
np.expand_dims(box_a[:, 2:], axis=1).repeat(B, axis=1),
np.expand_dims(box_b[:, 2:], axis=0).repeat(A, axis=0),
)
min_xy = np.maximum(
np.expand_dims(box_a[:, :2], axis=1).repeat(B, axis=1),
np.expand_dims(box_b[:, :2], axis=0).repeat(A, axis=0),
)
inter = np.clip((max_xy - min_xy), a_min=0, a_max=None)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (array) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (array) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (array) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = (
((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]))
.reshape(-1, 1)
.repeat(box_b.shape[0], axis=1)
) # [A,B]
area_b = (
((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]))
.reshape(1, -1)
.repeat(box_a.shape[0], axis=0)
) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
def overlap_similarity(box, other_boxes):
"""Computes the IOU between a bounding box and set of other boxes."""
box = np.expand_dims(box, axis=0) # Equivalent to unsqueeze(0) in PyTorch
iou = jaccard(box, other_boxes)
return np.squeeze(iou, axis=0) # Equivalent to squeeze(0) in PyTorch
class BlazeFace:
def __init__(self, model_path, device="cuda"):
self.anchor_options = {
"num_layers": 4,
"min_scale": 0.1484375,
"max_scale": 0.75,
"input_size_height": 128,
"input_size_width": 128,
"anchor_offset_x": 0.5,
"anchor_offset_y": 0.5,
"strides": [8, 16, 16, 16],
"aspect_ratios": [1.0],
"reduce_boxes_in_lowest_layer": False,
"interpolated_scale_aspect_ratio": 1.0,
"fixed_anchor_size": True,
}
self.num_classes = 1
self.num_anchors = 896
self.num_coords = 16
self.x_scale = 128.0
self.y_scale = 128.0
self.h_scale = 128.0
self.w_scale = 128.0
self.min_score_thresh = 0.5
self.min_suppression_threshold = 0.3
self.anchors = self.generate_anchors(self.anchor_options)
self.anchors = np.array(self.anchors)
assert len(self.anchors) == 896
self.model, self.model_type = load_model(model_path, device=device)
self.output_names = ["regressors", "classificators"]
def __call__(self, image: np.ndarray):
"""
image: RGB image
"""
image = cv2.resize(image, (128, 128))
image = image[np.newaxis, :, :, :].astype(np.float32)
image = image / 127.5 - 1.0
outputs = {}
if self.model_type == "onnx":
out_list = self.model.run(None, {"input": image})
for i, name in enumerate(self.output_names):
outputs[name] = out_list[i]
elif self.model_type == "tensorrt":
self.model.setup({"input": image})
self.model.infer()
for name in self.output_names:
outputs[name] = self.model.buffer[name][0]
else:
raise ValueError(f"Unsupported model type: {self.model_type}")
boxes = self.postprocess(outputs["regressors"], outputs["classificators"])
return boxes
def calculate_scale(self, min_scale, max_scale, stride_index, num_strides):
return min_scale + (max_scale - min_scale) * stride_index / (num_strides - 1.0)
def generate_anchors(self, options):
strides_size = len(options["strides"])
assert options["num_layers"] == strides_size
anchors = []
layer_id = 0
while layer_id < strides_size:
anchor_height = []
anchor_width = []
aspect_ratios = []
scales = []
# For same strides, we merge the anchors in the same order.
last_same_stride_layer = layer_id
while (last_same_stride_layer < strides_size) and (
options["strides"][last_same_stride_layer]
== options["strides"][layer_id]
):
scale = self.calculate_scale(
options["min_scale"],
options["max_scale"],
last_same_stride_layer,
strides_size,
)
if (
last_same_stride_layer == 0
and options["reduce_boxes_in_lowest_layer"]
):
# For first layer, it can be specified to use predefined anchors.
aspect_ratios.append(1.0)
aspect_ratios.append(2.0)
aspect_ratios.append(0.5)
scales.append(0.1)
scales.append(scale)
scales.append(scale)
else:
for aspect_ratio in options["aspect_ratios"]:
aspect_ratios.append(aspect_ratio)
scales.append(scale)
if options["interpolated_scale_aspect_ratio"] > 0.0:
scale_next = (
1.0
if last_same_stride_layer == strides_size - 1
else self.calculate_scale(
options["min_scale"],
options["max_scale"],
last_same_stride_layer + 1,
strides_size,
)
)
scales.append(np.sqrt(scale * scale_next))
aspect_ratios.append(options["interpolated_scale_aspect_ratio"])
last_same_stride_layer += 1
for i in range(len(aspect_ratios)):
ratio_sqrts = np.sqrt(aspect_ratios[i])
anchor_height.append(scales[i] / ratio_sqrts)
anchor_width.append(scales[i] * ratio_sqrts)
stride = options["strides"][layer_id]
feature_map_height = int(np.ceil(options["input_size_height"] / stride))
feature_map_width = int(np.ceil(options["input_size_width"] / stride))
for y in range(feature_map_height):
for x in range(feature_map_width):
for anchor_id in range(len(anchor_height)):
x_center = (x + options["anchor_offset_x"]) / feature_map_width
y_center = (y + options["anchor_offset_y"]) / feature_map_height
new_anchor = [x_center, y_center, 0, 0]
if options["fixed_anchor_size"]:
new_anchor[2] = 1.0
new_anchor[3] = 1.0
else:
new_anchor[2] = anchor_width[anchor_id]
new_anchor[3] = anchor_height[anchor_id]
anchors.append(new_anchor)
layer_id = last_same_stride_layer
return anchors
def _tensors_to_detections(self, raw_box_tensor, raw_score_tensor, anchors):
"""The output of the neural network is a tensor of shape (b, 896, 16)
containing the bounding box regressor predictions, as well as a tensor
of shape (b, 896, 1) with the classification confidences.
This function converts these two "raw" tensors into proper detections.
Returns a list of (num_detections, 17) tensors, one for each image in
the batch.
This is based on the source code from:
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.cc
mediapipe/calculators/tflite/tflite_tensors_to_detections_calculator.proto
"""
assert raw_box_tensor.ndim == 3
assert raw_box_tensor.shape[1] == self.num_anchors
assert raw_box_tensor.shape[2] == self.num_coords
assert raw_score_tensor.ndim == 3
assert raw_score_tensor.shape[1] == self.num_anchors
assert raw_score_tensor.shape[2] == self.num_classes
assert raw_box_tensor.shape[0] == raw_score_tensor.shape[0]
detection_boxes = self._decode_boxes(raw_box_tensor, anchors)
raw_score_tensor = np.clip(raw_score_tensor, -50, 100)
detection_scores = 1 / (1 + np.exp(-raw_score_tensor))
mask = detection_scores >= self.min_score_thresh
mask = mask[0, :, 0]
boxes = detection_boxes[0, mask, :]
scores = detection_scores[0, mask, :]
return np.concatenate((boxes, scores), axis=-1)
def _decode_boxes(self, raw_boxes, anchors):
"""Converts the predictions into actual coordinates using
the anchor boxes. Processes the entire batch at once.
"""
boxes = np.zeros_like(raw_boxes)
x_center = raw_boxes[..., 0] / self.x_scale * anchors[:, 2] + anchors[:, 0]
y_center = raw_boxes[..., 1] / self.y_scale * anchors[:, 3] + anchors[:, 1]
w = raw_boxes[..., 2] / self.w_scale * anchors[:, 2]
h = raw_boxes[..., 3] / self.h_scale * anchors[:, 3]
boxes[..., 0] = self.x_scale * (x_center - w / 2.0) # xmin
boxes[..., 1] = self.y_scale * (y_center - h / 2.0) # ymin
boxes[..., 2] = self.w_scale * (x_center + w / 2.0) # xmax
boxes[..., 3] = self.h_scale * (y_center + h / 2.0) # ymax
for k in range(6):
offset = 4 + k * 2
keypoint_x = (
raw_boxes[..., offset] / self.x_scale * anchors[:, 2] + anchors[:, 0]
)
keypoint_y = (
raw_boxes[..., offset + 1] / self.y_scale * anchors[:, 3]
+ anchors[:, 1]
)
boxes[..., offset] = keypoint_x
boxes[..., offset + 1] = keypoint_y
return boxes
def _weighted_non_max_suppression(self, detections):
"""The alternative NMS method as mentioned in the BlazeFace paper:
"We replace the suppression algorithm with a blending strategy that
estimates the regression parameters of a bounding box as a weighted
mean between the overlapping predictions."
The original MediaPipe code assigns the score of the most confident
detection to the weighted detection, but we take the average score
of the overlapping detections.
The input detections should be a NumPy array of shape (count, 17).
Returns a list of NumPy arrays, one for each detected face.
This is based on the source code from:
mediapipe/calculators/util/non_max_suppression_calculator.cc
mediapipe/calculators/util/non_max_suppression_calculator.proto
"""
if len(detections) == 0:
return []
output_detections = []
# Sort the detections from highest to lowest score.
remaining = np.argsort(detections[:, 16])[::-1]
while len(remaining) > 0:
detection = detections[remaining[0]]
# Compute the overlap between the first box and the other
# remaining boxes. (Note that the other_boxes also include
# the first_box.)
first_box = detection[:4]
other_boxes = detections[remaining, :4]
ious = overlap_similarity(first_box, other_boxes)
# If two detections don't overlap enough, they are considered
# to be from different faces.
mask = ious > self.min_suppression_threshold
overlapping = remaining[mask]
remaining = remaining[~mask]
# Take an average of the coordinates from the overlapping
# detections, weighted by their confidence scores.
weighted_detection = detection.copy()
if len(overlapping) > 1:
coordinates = detections[overlapping, :16]
scores = detections[overlapping, 16:17]
total_score = scores.sum()
weighted = (coordinates * scores).sum(axis=0) / total_score
weighted_detection[:16] = weighted
weighted_detection[16] = total_score / len(overlapping)
output_detections.append(weighted_detection)
return output_detections
def postprocess(self, raw_boxes, scores):
detections = self._tensors_to_detections(raw_boxes, scores, self.anchors)
detections = self._weighted_non_max_suppression(detections)
detections = np.array(detections)
return detections
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="")
parser.add_argument("--image", type=str, default=None)
args = parser.parse_args()
blaze_face = BlazeFace(args.model)
image = cv2.imread(args.image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (128, 128))
image = image[np.newaxis, :, :, :].astype(np.float32)
image = image / 127.5 - 1.0
boxes = blaze_face(image)
print(boxes)