AutoSubGen / app.py
Athspi's picture
Update app.py
818e336 verified
raw
history blame
5.87 kB
import os
import re
import google.generativeai as genai
from moviepy.video.io.VideoFileClip import VideoFileClip
import tempfile
import logging
import gradio as gr
from datetime import timedelta
# Suppress moviepy logs
logging.getLogger("moviepy").setLevel(logging.ERROR)
# Configure Gemini API
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
# Create the Gemini model
model = genai.GenerativeModel("gemini-2.0-flash-exp")
# Enhanced language support
SUPPORTED_LANGUAGES = [
"Auto Detect", "English", "Spanish", "French", "German", "Italian",
"Portuguese", "Russian", "Japanese", "Korean", "Arabic", "Hindi",
"Chinese", "Dutch", "Turkish", "Polish", "Vietnamese", "Thai"
]
# Magic Prompts
TRANSCRIPTION_PROMPT = """You are a professional subtitling expert. Analyze this audio and generate precise subtitles with accurate timestamps following these rules:
1. Identify natural speech segments (3-7 words)
2. Include exact start/end times in [HH:MM:SS.ms] format
3. Add speaker identification when multiple voices
4. Preserve emotional tone and punctuation
5. Format exactly like:
[00:00:05.250 -> 00:00:08.100]
Hello world! This is an example.
[00:00:08.500 -> 00:00:10.200]
Second subtitle line.
Return ONLY the subtitles with timestamps, no explanations."""
TRANSLATION_PROMPT = """You are a certified translator. Translate these subtitles to {target_language} following these rules:
1. Keep timestamps EXACTLY as original
2. Match subtitle length to original timing
3. Preserve names/technical terms
4. Use natural colloquial speech
5. Maintain line breaks and formatting
ORIGINAL SUBTITLES:
{subtitles}
TRANSLATED {target_language} SUBTITLES:"""
def extract_audio(video_path):
"""Extract high-quality audio from video"""
video = VideoFileClip(video_path)
audio_path = os.path.join(tempfile.gettempdir(), "high_quality_audio.wav")
video.audio.write_audiofile(audio_path, fps=44100, nbytes=2, codec='pcm_s16le')
return audio_path
def parse_timestamp(timestamp_str):
"""Convert timestamp string to seconds"""
h, m, s = map(float, timestamp_str.split(':'))
return h * 3600 + m * 60 + s
def gemini_transcribe(audio_path):
"""Get timestamped transcription from Gemini"""
with open(audio_path, "rb") as f:
audio_data = f.read()
response = model.generate_content(
contents=[TRANSCRIPTION_PROMPT,
{'mime_type': 'audio/wav', 'data': audio_data}]
)
return response.text
def create_srt(subtitles_text):
"""Convert Gemini's raw output to SRT format"""
entries = re.split(r'\n{2,}', subtitles_text.strip())
srt_output = []
for idx, entry in enumerate(entries, 1):
time_match = re.match(r'\[(.*?) -> (.*?)\]', entry)
if not time_match:
continue
start_time = parse_timestamp(time_match.group(1))
end_time = parse_timestamp(time_match.group(2))
text = entry.split(']', 1)[1].strip()
srt_output.append(
f"{idx}\n"
f"{timedelta(seconds=start_time)} --> {timedelta(seconds=end_time)}\n"
f"{text}\n"
)
return "".join(srt_output)
def translate_subtitles(subtitles, target_lang):
"""Translate subtitles while preserving timing"""
prompt = TRANSLATION_PROMPT.format(
target_language=target_lang,
subtitles=subtitles
)
response = model.generate_content(prompt)
return response.text
def process_video(video_path, source_lang, target_lang):
"""Full processing pipeline"""
# Audio extraction
audio_path = extract_audio(video_path)
# Transcription
raw_transcription = gemini_transcribe(audio_path)
srt_original = create_srt(raw_transcription)
# Save original
original_srt = os.path.join(tempfile.gettempdir(), "original.srt")
with open(original_srt, "w") as f:
f.write(srt_original)
# Translation
translated_srt = None
if target_lang != "None":
translated_text = translate_subtitles(srt_original, target_lang)
translated_srt = os.path.join(tempfile.gettempdir(), "translated.srt")
with open(translated_srt, "w") as f:
f.write(translated_text)
# Cleanup
os.remove(audio_path)
return original_srt, translated_srt
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default(spacing_size="sm")) as app:
gr.Markdown("# 🎬 Professional Subtitle Studio")
gr.Markdown("Generate broadcast-quality subtitles with perfect timing")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video", sources=["upload"])
lang_row = gr.Row()
source_lang = gr.Dropdown(
label="Source Language",
choices=SUPPORTED_LANGUAGES,
value="Auto Detect"
)
target_lang = gr.Dropdown(
label="Translate To",
choices=["None"] + SUPPORTED_LANGUAGES[1:],
value="None"
)
process_btn = gr.Button("Generate Subtitles", variant="primary")
with gr.Column():
original_sub = gr.File(label="Original Subtitles")
translated_sub = gr.File(label="Translated Subtitles")
preview_area = gr.HTML("""
<div style='border: 2px dashed #666; padding: 20px; border-radius: 8px;'>
<h3 style='margin-top: 0;'>Subtitle Preview</h3>
<div id='preview-content' style='height: 300px; overflow-y: auto;'></div>
</div>
""")
process_btn.click(
process_video,
inputs=[video_input, source_lang, target_lang],
outputs=[original_sub, translated_sub]
)
if __name__ == "__main__":
app.launch(server_port=7860, share=True)