Athspi-promax / app.py
Athspi's picture
Update app.py
bc0925b verified
import gradio as gr
import threading
import os
from openai import OpenAI
# Load API Keys from environment variables
API_KEY_LLAMA = os.getenv("OPENROUTER_API_KEY1")
API_KEY_GEMMA = os.getenv("OPENROUTER_API_KEY2")
API_KEY_DEEPSEEK1 = os.getenv("OPENROUTER_API_KEY3")
API_KEY_DEEPSEEK2 = os.getenv("OPENROUTER_API_KEY4")
# Initialize OpenAI clients for each API key
llama_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_LLAMA)
gemma_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_GEMMA)
deepseek_client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK1)
deepseek_client2 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY_DEEPSEEK2)
# Function to query Llama
def query_llama(user_input, results):
try:
response = llama_client.chat.completions.create(
model="meta-llama/llama-3.2-3b-instruct:free",
messages=[{"role": "user", "content": user_input}]
)
results["Llama"] = response.choices[0].message.content
except Exception as e:
results["Llama"] = f"Error: {str(e)}"
# Function to query Gemma
def query_gemma(user_input, results):
try:
response = gemma_client.chat.completions.create(
model="google/gemma-2-9b-it:free",
messages=[{"role": "user", "content": user_input}]
)
results["Gemma"] = response.choices[0].message.content
except Exception as e:
results["Gemma"] = f"Error: {str(e)}"
# Function to query DeepSeek-1
def query_deepseek_1(user_input, results):
try:
response = deepseek_client1.chat.completions.create(
model="deepseek/deepseek-r1:free",
messages=[{"role": "user", "content": user_input}]
)
results["DeepSeek1"] = response.choices[0].message.content
except Exception as e:
results["DeepSeek1"] = f"Error: {str(e)}"
# Function to refine responses using DeepSeek-2
def refine_response(user_input):
try:
results = {}
# Start threads for parallel API calls
threads = [
threading.Thread(target=query_llama, args=(user_input, results)),
threading.Thread(target=query_gemma, args=(user_input, results)),
threading.Thread(target=query_deepseek_1, args=(user_input, results))
]
# Start all threads
for thread in threads:
thread.start()
# Wait for all threads to finish
for thread in threads:
thread.join()
# Filter valid responses
valid_responses = {k: v.strip() for k, v in results.items() if v and "Error" not in v}
if len(valid_responses) < 2:
return "\n\n".join(f"{k} Response: {v}" for k, v in valid_responses.items())
# Prepare refined prompt
improvement_prompt = f"""
Here are AI-generated responses:
Response 1 (Llama): {results.get("Llama", "N/A")}
Response 2 (Gemma): {results.get("Gemma", "N/A")}
Response 3 (DeepSeek1): {results.get("DeepSeek1", "N/A")}
Please improve the clarity and coherence, and generate a refined response.
"""
# Send to DeepSeek-2 for final refinement
try:
refined_completion = deepseek_client2.chat.completions.create(
model="deepseek/deepseek-r1:free",
messages=[{"role": "user", "content": improvement_prompt}]
)
refined_content = refined_completion.choices[0].message.content
return refined_content if refined_content.strip() else "Refinement failed, returning best response."
except Exception as e:
return f"Error refining response: {str(e)}"
except Exception as e:
return f"Unexpected error: {str(e)}"
# Gradio Interface
interface = gr.Interface(
fn=refine_response,
inputs=gr.Textbox(label="Enter your question"),
outputs=gr.Textbox(label="AI Response"),
title="Multi-API AI Chat",
description="Ask a question and receive a response refined by multiple AI models.",
)
# Run the app
if __name__ == "__main__":
interface.launch(debug=True)