File size: 14,845 Bytes
530c965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import (accuracy_score, precision_score, 
                            recall_score, f1_score, confusion_matrix)
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
import docker
import sympy as sp
from scipy.optimize import minimize, differential_evolution
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from tenacity import retry, stop_after_attempt, wait_fixed
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import (AutoTokenizer, AutoModel,
                          pipeline, set_seed)
import networkx as nx
from sklearn.cluster import KMeans
from scipy.stats import ttest_ind
from statsmodels.tsa.arima.model import ARIMA
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import cv2
from PIL import Image
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
import logging
from logging.handlers import RotatingFileHandler
import platform
import psutil
import yaml
import json
import black
import flake8.main.application

# Initialize NLTK resources
nltk.download('punkt')
nltk.download('vader_lexicon')

# Configure logging
log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5)
logging.basicConfig(
    handlers=[log_handler],
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Enhanced system instructions with security and best practices
SYSTEM_INSTRUCTIONS = """
You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines:
1. Generate secure, efficient, and maintainable code
2. Implement industry best practices and design patterns
3. Include proper error handling and logging
4. Optimize for performance and scalability
5. Add detailed documentation and type hints
6. Suggest relevant libraries and frameworks
7. Consider security implications and vulnerabilities
8. Provide test cases and benchmarking
9. Support multiple programming languages when applicable
10. Follow PEP8 and other relevant style guides
"""

# Create the model with enhanced configuration
generation_config = {
    "temperature": 0.35,
    "top_p": 0.85,
    "top_k": 40,
    "max_output_tokens": 8192,
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction=SYSTEM_INSTRUCTIONS
)
chat_session = model.start_chat(history=[])

@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
def generate_response(user_input):
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        logging.error(f"Generation error: {str(e)}")
        return f"Error: {e}"

def optimize_code(code):
    """Perform comprehensive code optimization and linting"""
    with open("temp_code.py", "w") as file:
        file.write(code)
    
    # Run multiple code quality tools
    tools = {
        'pylint': ["pylint", "temp_code.py"],
        'flake8': ["flake8", "temp_code.py"],
        'black': ["black", "--check", "temp_code.py"]
    }
    
    results = {}
    for tool, cmd in tools.items():
        result = subprocess.run(cmd, capture_output=True, text=True)
        results[tool] = {
            'output': result.stdout + result.stderr,
            'status': result.returncode
        }
    
    # Format code with black
    try:
        formatted_code = black.format_file_contents(
            code, mode=black.FileMode()
        )
        code = formatted_code
    except Exception as e:
        logging.warning(f"Black formatting failed: {str(e)}")
    
    os.remove("temp_code.py")
    return code, results

def train_advanced_ml_model(X, y):
    """Enhanced ML training with hyperparameter tuning"""
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, stratify=y
    )
    
    param_grid = {
        'RandomForest': {
            'n_estimators': [100, 200],
            'max_depth': [None, 10, 20],
            'min_samples_split': [2, 5]
        },
        'GradientBoosting': {
            'n_estimators': [100, 200],
            'learning_rate': [0.1, 0.05],
            'max_depth': [3, 5]
        }
    }
    
    models = {
        'RandomForest': RandomForestClassifier(random_state=42),
        'GradientBoosting': GradientBoostingClassifier(random_state=42)
    }
    
    results = {}
    for name, model in models.items():
        grid_search = GridSearchCV(
            model,
            param_grid[name],
            cv=5,
            n_jobs=-1,
            scoring='f1_weighted'
        )
        grid_search.fit(X_train, y_train)
        
        best_model = grid_search.best_estimator_
        y_pred = best_model.predict(X_test)
        
        results[name] = {
            'best_params': grid_search.best_params_,
            'accuracy': accuracy_score(y_test, y_pred),
            'precision': precision_score(y_test, y_pred, average='weighted'),
            'recall': recall_score(y_test, y_pred, average='weighted'),
            'f1': f1_score(y_test, y_pred, average='weighted'),
            'confusion_matrix': confusion_matrix(y_test, y_pred).tolist()
        }
    
    return results

def handle_error(error):
    """Enhanced error handling with logging and notifications"""
    st.error(f"An error occurred: {error}")
    logging.error(f"User-facing error: {str(error)}")
    
    # Send notification to admin (example with AWS SNS)
    try:
        if st.secrets.get("AWS_CREDENTIALS"):
            client = boto3.client(
                'sns',
                aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"],
                aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"],
                region_name='us-east-1'
            )
            client.publish(
                TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"],
                Message=f"Code Assistant Error: {str(error)}"
            )
    except Exception as e:
        logging.error(f"Error notification failed: {str(e)}")

def visualize_complex_data(data):
    """Enhanced visualization with interactive elements"""
    df = pd.DataFrame(data)
    
    # Create interactive Plotly figures
    fig = px.scatter_matrix(df)
    fig.update_layout(
        title='Interactive Scatter Matrix',
        width=1200,
        height=800
    )
    
    # Add 3D visualization
    if df.shape[1] >= 3:
        fig_3d = px.scatter_3d(
            df,
            x=df.columns[0],
            y=df.columns[1],
            z=df.columns[2],
            title='3D Data Visualization'
        )
        return [fig, fig_3d]
    
    return [fig]

def perform_nlp_analysis(text):
    """Enhanced NLP analysis with transformer models"""
    # Basic spaCy analysis
    nlp = spacy.load("en_core_web_trf")
    doc = nlp(text)
    
    # Transformer-based sentiment analysis
    sentiment_analyzer = pipeline(
        "sentiment-analysis",
        model="distilbert-base-uncased-finetuned-sst-2-english"
    )
    
    # Text summarization
    summarizer = pipeline("summarization", model="t5-small")
    
    return {
        'entities': [(ent.text, ent.label_) for ent in doc.ents],
        'syntax': [(token.text, token.dep_) for token in doc],
        'sentiment': sentiment_analyzer(text),
        'summary': summarizer(text, max_length=50, min_length=25),
        'transformer_embeddings': doc._.trf_data.tensors[-1].tolist()
    }

# Enhanced Streamlit UI Components
st.set_page_config(
    page_title="Ultra AI Code Assistant Pro",
    page_icon="πŸš€",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for improved styling
st.markdown("""
<style>
    .main-container {
        background-color: #f8f9fa;
        padding: 2rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .code-block {
        background-color: #1e1e1e;
        color: #d4d4d4;
        padding: 1rem;
        border-radius: 5px;
        margin: 1rem 0;
        font-family: 'Fira Code', monospace;
    }
    .stButton>button {
        background: linear-gradient(45deg, #4CAF50, #45a049);
        color: white;
        border: none;
        padding: 0.8rem 1.5rem;
        border-radius: 25px;
        font-weight: bold;
        transition: transform 0.2s;
    }
    .stButton>button:hover {
        transform: scale(1.05);
    }
    .feature-card {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        margin: 1rem 0;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    }
</style>
""", unsafe_allow_html=True)

# Main UI Layout
st.title("πŸš€ Ultra AI Code Assistant Pro")
st.markdown("""
<div class="main-container">
    <p class="subtitle">Next-Generation AI-Powered Development Environment</p>
</div>
""", unsafe_allow_html=True)

# Split layout into main content and sidebar
main_col, sidebar_col = st.columns([3, 1])

with main_col:
    task_type = st.selectbox("Select Task Type", [
        "Code Generation", 
        "ML Pipeline Development",
        "Data Science Analysis",
        "NLP Processing",
        "Computer Vision",
        "Cloud Deployment",
        "Performance Optimization"
    ], key='task_type')
    
    prompt = st.text_area("Describe your task in detail:", height=150,
                         placeholder="Enter your requirements here...")
    
    if st.button("Generate Solution", key="main_generate"):
        if not prompt.strip():
            st.error("Please provide detailed requirements")
        else:
            with st.spinner("Analyzing requirements and generating solution..."):
                try:
                    # Enhanced processing pipeline
                    processed_input = process_user_input(prompt)
                    response = generate_response(f"""
                        Generate comprehensive solution for: {processed_input.text}
                        Include:
                        - Architecture design
                        - Implementation code
                        - Testing strategy
                        - Deployment plan
                        - Monitoring setup
                    """)
                    
                    if "Error" in response:
                        handle_error(response)
                    else:
                        optimized_code, lint_results = optimize_code(response)
                        
                        # Display results in tabs
                        tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"])
                        
                        with tab1:
                            st.subheader("Optimized Solution")
                            st.code(optimized_code, language='python')
                            
                            col1, col2 = st.columns(2)
                            with col1:
                                st.download_button(
                                    label="Download Code",
                                    data=optimized_code,
                                    file_name="solution.py",
                                    mime="text/python"
                                )
                            with col2:
                                if st.button("Generate Documentation"):
                                    docs = generate_documentation(optimized_code)
                                    st.markdown(docs)
                        
                        with tab2:
                            st.subheader("Code Quality Report")
                            for tool, result in lint_results.items():
                                with st.expander(f"{tool.upper()} Results"):
                                    st.code(result['output'])
                            
                            st.subheader("Performance Metrics")
                            # Add performance benchmarking here
                        
                        with tab3:
                            st.subheader("Cloud Deployment Options")
                            # Add cloud deployment widgets here
                            
                except Exception as e:
                    handle_error(e)

with sidebar_col:
    st.markdown("## Quick Tools")
    
    if st.button("Code Review"):
        # Implement real-time code review
        pass
    
    if st.button("Security Scan"):
        # Implement security scanning
        pass
    
    st.markdown("## Project Stats")
    # Add system monitoring
    st.write(f"CPU Usage: {psutil.cpu_percent()}%")
    st.write(f"Memory Usage: {psutil.virtual_memory().percent}%")
    
    st.markdown("## Recent Activity")
    # Add activity log display
    st.write("No recent activity")

# Additional Features
st.markdown("## Advanced Features")
features = st.columns(3)

with features[0]:
    with st.expander("Live Collaboration"):
        st.write("Real-time collaborative coding features")
        # Add collaborative editing components

with features[1]:
    with st.expander("API Generator"):
        st.write("Generate REST API endpoints from code")
        # Add OpenAPI/Swagger generation

with features[2]:
    with st.expander("ML Ops"):
        st.write("Machine Learning Operations Dashboard")
        # Add model monitoring components

# System Monitoring Dashboard
st.markdown("## System Health Monitor")
sys_cols = st.columns(4)
sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%")
sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%")
sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%")
sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB")

# Footer
st.markdown("""
<hr>
<div style="text-align: center; padding: 1rem">
    <p>Ultra AI Code Assistant Pro v2.0</p>
    <small>Powered by Gemini 1.5 Pro | Secure and Compliant</small>
</div>
""", unsafe_allow_html=True)

# Additional enhancements not shown here would include:
# - Real-time collaboration features
# - Jupyter notebook integration
# - CI/CD pipeline generation
# - Infrastructure-as-Code templates
# - Advanced profiling and benchmarking
# - Multi-language support
# - Vulnerability scanning integration
# - Automated documentation generation
# - Cloud deployment wizards
# - Team management features