File size: 14,845 Bytes
530c965 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import (accuracy_score, precision_score,
recall_score, f1_score, confusion_matrix)
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
import docker
import sympy as sp
from scipy.optimize import minimize, differential_evolution
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from tenacity import retry, stop_after_attempt, wait_fixed
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import (AutoTokenizer, AutoModel,
pipeline, set_seed)
import networkx as nx
from sklearn.cluster import KMeans
from scipy.stats import ttest_ind
from statsmodels.tsa.arima.model import ARIMA
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import cv2
from PIL import Image
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input
import logging
from logging.handlers import RotatingFileHandler
import platform
import psutil
import yaml
import json
import black
import flake8.main.application
# Initialize NLTK resources
nltk.download('punkt')
nltk.download('vader_lexicon')
# Configure logging
log_handler = RotatingFileHandler('app.log', maxBytes=1e6, backupCount=5)
logging.basicConfig(
handlers=[log_handler],
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Enhanced system instructions with security and best practices
SYSTEM_INSTRUCTIONS = """
You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains. Follow these guidelines:
1. Generate secure, efficient, and maintainable code
2. Implement industry best practices and design patterns
3. Include proper error handling and logging
4. Optimize for performance and scalability
5. Add detailed documentation and type hints
6. Suggest relevant libraries and frameworks
7. Consider security implications and vulnerabilities
8. Provide test cases and benchmarking
9. Support multiple programming languages when applicable
10. Follow PEP8 and other relevant style guides
"""
# Create the model with enhanced configuration
generation_config = {
"temperature": 0.35,
"top_p": 0.85,
"top_k": 40,
"max_output_tokens": 8192,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction=SYSTEM_INSTRUCTIONS
)
chat_session = model.start_chat(history=[])
@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
logging.error(f"Generation error: {str(e)}")
return f"Error: {e}"
def optimize_code(code):
"""Perform comprehensive code optimization and linting"""
with open("temp_code.py", "w") as file:
file.write(code)
# Run multiple code quality tools
tools = {
'pylint': ["pylint", "temp_code.py"],
'flake8': ["flake8", "temp_code.py"],
'black': ["black", "--check", "temp_code.py"]
}
results = {}
for tool, cmd in tools.items():
result = subprocess.run(cmd, capture_output=True, text=True)
results[tool] = {
'output': result.stdout + result.stderr,
'status': result.returncode
}
# Format code with black
try:
formatted_code = black.format_file_contents(
code, mode=black.FileMode()
)
code = formatted_code
except Exception as e:
logging.warning(f"Black formatting failed: {str(e)}")
os.remove("temp_code.py")
return code, results
def train_advanced_ml_model(X, y):
"""Enhanced ML training with hyperparameter tuning"""
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y
)
param_grid = {
'RandomForest': {
'n_estimators': [100, 200],
'max_depth': [None, 10, 20],
'min_samples_split': [2, 5]
},
'GradientBoosting': {
'n_estimators': [100, 200],
'learning_rate': [0.1, 0.05],
'max_depth': [3, 5]
}
}
models = {
'RandomForest': RandomForestClassifier(random_state=42),
'GradientBoosting': GradientBoostingClassifier(random_state=42)
}
results = {}
for name, model in models.items():
grid_search = GridSearchCV(
model,
param_grid[name],
cv=5,
n_jobs=-1,
scoring='f1_weighted'
)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
results[name] = {
'best_params': grid_search.best_params_,
'accuracy': accuracy_score(y_test, y_pred),
'precision': precision_score(y_test, y_pred, average='weighted'),
'recall': recall_score(y_test, y_pred, average='weighted'),
'f1': f1_score(y_test, y_pred, average='weighted'),
'confusion_matrix': confusion_matrix(y_test, y_pred).tolist()
}
return results
def handle_error(error):
"""Enhanced error handling with logging and notifications"""
st.error(f"An error occurred: {error}")
logging.error(f"User-facing error: {str(error)}")
# Send notification to admin (example with AWS SNS)
try:
if st.secrets.get("AWS_CREDENTIALS"):
client = boto3.client(
'sns',
aws_access_key_id=st.secrets["AWS_CREDENTIALS"]["access_key"],
aws_secret_access_key=st.secrets["AWS_CREDENTIALS"]["secret_key"],
region_name='us-east-1'
)
client.publish(
TopicArn=st.secrets["AWS_CREDENTIALS"]["sns_topic"],
Message=f"Code Assistant Error: {str(error)}"
)
except Exception as e:
logging.error(f"Error notification failed: {str(e)}")
def visualize_complex_data(data):
"""Enhanced visualization with interactive elements"""
df = pd.DataFrame(data)
# Create interactive Plotly figures
fig = px.scatter_matrix(df)
fig.update_layout(
title='Interactive Scatter Matrix',
width=1200,
height=800
)
# Add 3D visualization
if df.shape[1] >= 3:
fig_3d = px.scatter_3d(
df,
x=df.columns[0],
y=df.columns[1],
z=df.columns[2],
title='3D Data Visualization'
)
return [fig, fig_3d]
return [fig]
def perform_nlp_analysis(text):
"""Enhanced NLP analysis with transformer models"""
# Basic spaCy analysis
nlp = spacy.load("en_core_web_trf")
doc = nlp(text)
# Transformer-based sentiment analysis
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
# Text summarization
summarizer = pipeline("summarization", model="t5-small")
return {
'entities': [(ent.text, ent.label_) for ent in doc.ents],
'syntax': [(token.text, token.dep_) for token in doc],
'sentiment': sentiment_analyzer(text),
'summary': summarizer(text, max_length=50, min_length=25),
'transformer_embeddings': doc._.trf_data.tensors[-1].tolist()
}
# Enhanced Streamlit UI Components
st.set_page_config(
page_title="Ultra AI Code Assistant Pro",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved styling
st.markdown("""
<style>
.main-container {
background-color: #f8f9fa;
padding: 2rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.code-block {
background-color: #1e1e1e;
color: #d4d4d4;
padding: 1rem;
border-radius: 5px;
margin: 1rem 0;
font-family: 'Fira Code', monospace;
}
.stButton>button {
background: linear-gradient(45deg, #4CAF50, #45a049);
color: white;
border: none;
padding: 0.8rem 1.5rem;
border-radius: 25px;
font-weight: bold;
transition: transform 0.2s;
}
.stButton>button:hover {
transform: scale(1.05);
}
.feature-card {
background: white;
padding: 1.5rem;
border-radius: 10px;
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
</style>
""", unsafe_allow_html=True)
# Main UI Layout
st.title("π Ultra AI Code Assistant Pro")
st.markdown("""
<div class="main-container">
<p class="subtitle">Next-Generation AI-Powered Development Environment</p>
</div>
""", unsafe_allow_html=True)
# Split layout into main content and sidebar
main_col, sidebar_col = st.columns([3, 1])
with main_col:
task_type = st.selectbox("Select Task Type", [
"Code Generation",
"ML Pipeline Development",
"Data Science Analysis",
"NLP Processing",
"Computer Vision",
"Cloud Deployment",
"Performance Optimization"
], key='task_type')
prompt = st.text_area("Describe your task in detail:", height=150,
placeholder="Enter your requirements here...")
if st.button("Generate Solution", key="main_generate"):
if not prompt.strip():
st.error("Please provide detailed requirements")
else:
with st.spinner("Analyzing requirements and generating solution..."):
try:
# Enhanced processing pipeline
processed_input = process_user_input(prompt)
response = generate_response(f"""
Generate comprehensive solution for: {processed_input.text}
Include:
- Architecture design
- Implementation code
- Testing strategy
- Deployment plan
- Monitoring setup
""")
if "Error" in response:
handle_error(response)
else:
optimized_code, lint_results = optimize_code(response)
# Display results in tabs
tab1, tab2, tab3 = st.tabs(["Solution", "Analysis", "Deployment"])
with tab1:
st.subheader("Optimized Solution")
st.code(optimized_code, language='python')
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="Download Code",
data=optimized_code,
file_name="solution.py",
mime="text/python"
)
with col2:
if st.button("Generate Documentation"):
docs = generate_documentation(optimized_code)
st.markdown(docs)
with tab2:
st.subheader("Code Quality Report")
for tool, result in lint_results.items():
with st.expander(f"{tool.upper()} Results"):
st.code(result['output'])
st.subheader("Performance Metrics")
# Add performance benchmarking here
with tab3:
st.subheader("Cloud Deployment Options")
# Add cloud deployment widgets here
except Exception as e:
handle_error(e)
with sidebar_col:
st.markdown("## Quick Tools")
if st.button("Code Review"):
# Implement real-time code review
pass
if st.button("Security Scan"):
# Implement security scanning
pass
st.markdown("## Project Stats")
# Add system monitoring
st.write(f"CPU Usage: {psutil.cpu_percent()}%")
st.write(f"Memory Usage: {psutil.virtual_memory().percent}%")
st.markdown("## Recent Activity")
# Add activity log display
st.write("No recent activity")
# Additional Features
st.markdown("## Advanced Features")
features = st.columns(3)
with features[0]:
with st.expander("Live Collaboration"):
st.write("Real-time collaborative coding features")
# Add collaborative editing components
with features[1]:
with st.expander("API Generator"):
st.write("Generate REST API endpoints from code")
# Add OpenAPI/Swagger generation
with features[2]:
with st.expander("ML Ops"):
st.write("Machine Learning Operations Dashboard")
# Add model monitoring components
# System Monitoring Dashboard
st.markdown("## System Health Monitor")
sys_cols = st.columns(4)
sys_cols[0].metric("CPU Load", f"{psutil.cpu_percent()}%")
sys_cols[1].metric("Memory", f"{psutil.virtual_memory().percent}%")
sys_cols[2].metric("Disk", f"{psutil.disk_usage('/').percent}%")
sys_cols[3].metric("Network", f"{psutil.net_io_counters().bytes_sent/1e6:.2f}MB")
# Footer
st.markdown("""
<hr>
<div style="text-align: center; padding: 1rem">
<p>Ultra AI Code Assistant Pro v2.0</p>
<small>Powered by Gemini 1.5 Pro | Secure and Compliant</small>
</div>
""", unsafe_allow_html=True)
# Additional enhancements not shown here would include:
# - Real-time collaboration features
# - Jupyter notebook integration
# - CI/CD pipeline generation
# - Infrastructure-as-Code templates
# - Advanced profiling and benchmarking
# - Multi-language support
# - Vulnerability scanning integration
# - Automated documentation generation
# - Cloud deployment wizards
# - Team management features |