ghost / apex /csrc /amp_C_frontend.cpp
Jagrut Thakare
v1
9be8aa9
#include <torch/extension.h>
void multi_tensor_scale_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float scale);
void multi_tensor_sgd_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale);
void multi_tensor_axpby_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float a,
float b,
int arg_to_check);
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::optional<bool> per_tensor_python);
void multi_tensor_lamb_stage1_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_decay,
const int step,
const float beta1,
const float beta2,
const float epsilon,
at::Tensor global_grad_norm,
const float max_global_grad_norm);
void multi_tensor_lamb_stage2_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor per_tensor_param_norm,
at::Tensor per_tensor_update_norm,
const float lr,
const float weight_decay,
at::optional<bool> use_nvlamb_python);
void multi_tensor_adam_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
const float lr,
const float beta1,
const float beta2,
const float epsilon,
const int step,
const int mode,
const int bias_correction,
const float weight_decay);
void multi_tensor_adagrad_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
const float lr,
const float epsilon,
const int mode,
const float weight_decay);
void multi_tensor_novograd_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::Tensor grad_norms,
const float lr,
const float beta1,
const float beta2,
const float epsilon,
const int step,
const int bias_correction,
const float weight_decay,
const int grad_averaging,
const int mode,
const int norm_type);
void multi_tensor_lamb_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
const float lr,
const float beta1,
const float beta2,
const float epsilon,
const int step,
const int bias_correction,
const float weight_decay,
const int grad_averaging,
const int mode,
at::Tensor global_grad_norm,
const float max_grad_norm,
at::optional<bool> use_nvlamb_python);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("multi_tensor_scale", &multi_tensor_scale_cuda,
"Fused overflow check + scale for a list of contiguous tensors");
m.def("multi_tensor_sgd", &multi_tensor_sgd_cuda,
"Fused SGD optimizer for list of contiguous tensors");
m.def("multi_tensor_axpby", &multi_tensor_axpby_cuda,
"out = a*x + b*y for a list of contiguous tensors");
m.def("multi_tensor_l2norm", &multi_tensor_l2norm_cuda,
"Computes L2 norm for a list of contiguous tensors");
m.def("multi_tensor_lamb_stage1_cuda", &multi_tensor_lamb_stage1_cuda,
"Computes update part of LAMB optimizer");
m.def("multi_tensor_lamb_stage2_cuda", &multi_tensor_lamb_stage2_cuda,
"Completes application of gradient to parameters for LAMB optimizer");
m.def("multi_tensor_adam", &multi_tensor_adam_cuda,
"Compute and apply gradient update to parameters for Adam optimizer");
m.def("multi_tensor_adagrad", &multi_tensor_adagrad_cuda,
"Compute and apply gradient update to parameters for Adam optimizer");
m.def("multi_tensor_novograd", &multi_tensor_novograd_cuda,
"Compute and apply gradient update to parameters for Adam optimizer");
m.def("multi_tensor_lamb", &multi_tensor_lamb_cuda,
"Computes and apply update for LAMB optimizer");
}