Spaces:
Running
Running
import torch | |
import numpy as np | |
import gradio as gr | |
import cv2 | |
import time | |
from PIL import Image | |
# Check device availability | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load YOLOv5 model | |
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device) | |
if device.type == "cuda": | |
model.half() # Use FP16 for performance boost | |
# Print available object classes | |
print(f"Model loaded with {len(model.names)} classes: {model.names}") | |
# Assign random colors to each class for bounding boxes | |
colors = {i: [int(c) for c in np.random.randint(0, 255, 3)] for i in range(len(model.names))} | |
def detect_objects(image): | |
start_time = time.time() # Start FPS measurement | |
image_pil = Image.fromarray(image) | |
with torch.no_grad(): | |
results = model(image_pil, conf=0.3, iou=0.3) # Apply NMS with IoU = 0.3 | |
rendered_images = results.render() # Get rendered image with default YOLOv5 visualization | |
# Get bounding boxes and draw color-coded boxes | |
img_cv = np.array(rendered_images[0]) if rendered_images else image | |
for det in results.xyxy[0]: # Bounding box format: x1, y1, x2, y2, conf, cls | |
x1, y1, x2, y2, conf, cls = map(int, det[:6]) | |
label = f"{model.names[cls]}: {conf:.2f}" | |
cv2.rectangle(img_cv, (x1, y1), (x2, y2), colors[cls], 2) | |
cv2.putText(img_cv, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[cls], 2) | |
# FPS Calculation | |
end_time = time.time() | |
fps = 1 / (end_time - start_time) | |
print(f"FPS: {fps:.2f}") | |
return img_cv | |
# Gradio interface | |
iface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="numpy", label="Upload Image"), | |
outputs=gr.Image(type="numpy", label="Detected Objects"), | |
title="Object Detection with YOLOv5", | |
description="Use webcam or upload an image to detect objects. Optimized for speed and accuracy!", | |
allow_flagging="never", | |
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"], | |
) | |
iface.launch() | |