Aumkeshchy2003's picture
Update app.py
4fa263e verified
raw
history blame
2.03 kB
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image
import random
# Load YOLOv5 model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device)
# Get class names from the model
CLASS_NAMES = model.names
# Generate consistent colors for each class
random.seed(42) # Fix the seed for consistent colors
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
def preprocess_image(image):
"""Convert numpy image to PIL format for YOLOv5 processing."""
image = Image.fromarray(image)
image = image.convert("RGB")
return image
def detect_objects(image):
"""Detect objects in the image and draw bounding boxes with consistent colors."""
image = preprocess_image(image)
results = model([image]) # YOLOv5 inference
image = np.array(image) # Convert PIL image back to numpy for OpenCV
for *box, conf, cls in results.xyxy[0]:
x1, y1, x2, y2 = map(int, box)
class_name = CLASS_NAMES[int(cls)]
confidence = conf.item() * 100
color = CLASS_COLORS[class_name] # Use pre-generated consistent color
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), color, 4)
# Display class label with confidence score
label = f"{class_name} ({confidence:.1f}%)"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
1, color, 3, cv2.LINE_AA)
return image
# Create Gradio Interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="Object Detection with YOLOv5",
description="Use webcam or upload an image to detect objects.",
allow_flagging="never",
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
)
# Launch the app
iface.launch()