Aumkeshchy2003's picture
Update app.py
8378a4b verified
raw
history blame
1.27 kB
import torch
import numpy as np
import gradio as gr
from PIL import Image
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load YOLOv5s model (smallest and fastest variant)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
# Enable half-precision for CUDA devices
if device.type == 'cuda':
model.half()
def detect_objects(image):
# Convert numpy array to PIL Image
image_pil = Image.fromarray(image)
# Perform inference without gradient calculation
with torch.no_grad():
results = model(image_pil)
# Render detections using optimized YOLOv5 method
rendered_images = results.render()
# Return the first rendered image as numpy array
return np.array(rendered_images[0]) if rendered_images else image
# Gradio interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="High-Speed Object Detection with YOLOv5s",
description="Optimized for speed using YOLOv5s and GPU acceleration.",
allow_flagging="never",
examples=["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
)
iface.launch()