Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
# Device configuration | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load YOLOv5 model | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) | |
# Set model confidence threshold | |
model.conf = 0.5 | |
if device.type == 'cuda': | |
model.half() | |
def process_frame(image): | |
"""Process a video frame or image and apply YOLOv5 object detection.""" | |
if image is None: | |
return None | |
try: | |
image_pil = Image.fromarray(image) | |
with torch.no_grad(): | |
results = model(image_pil) | |
rendered_images = results.render() | |
return np.array(rendered_images[0]) if rendered_images else image | |
except Exception as e: | |
print(f"Error processing frame: {e}") | |
return image | |
# Create Gradio UI | |
with gr.Blocks(title="Real-Time Object Detection") as app: | |
gr.Markdown("# Real-Time Object Detection") | |
with gr.Tabs(): | |
# ๐ท Live Webcam Tab | |
with gr.TabItem("๐ท Live Camera"): | |
with gr.Row(): | |
webcam_input = gr.Video(label="Live Feed") | |
live_output = gr.Image(label="Processed Feed") | |
webcam_input.change(process_frame, inputs=webcam_input, outputs=live_output) | |
# ๐ผ๏ธ Image Upload Tab (With Submit Button) | |
with gr.TabItem("๐ผ๏ธ Image Upload"): | |
with gr.Row(): | |
upload_input = gr.Image(type="numpy", label="Upload Image") | |
submit_button = gr.Button("Submit") | |
upload_output = gr.Image(label="Detection Result") | |
submit_button.click(process_frame, inputs=upload_input, outputs=upload_output) | |
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) | |