Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,11 @@ import torch
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
-
import cv2
|
6 |
|
7 |
# Device configuration
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
|
10 |
-
# Load
|
11 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
12 |
|
13 |
# Set model confidence threshold
|
@@ -16,7 +15,7 @@ if device.type == 'cuda':
|
|
16 |
model.half()
|
17 |
|
18 |
def process_frame(image):
|
19 |
-
"""
|
20 |
if image is None:
|
21 |
return None
|
22 |
|
@@ -32,35 +31,17 @@ def process_frame(image):
|
|
32 |
print(f"Error processing frame: {e}")
|
33 |
return image
|
34 |
|
35 |
-
def process_uploaded_image(image):
|
36 |
-
"""Processes an uploaded image and applies YOLOv5 object detection."""
|
37 |
-
if image is None:
|
38 |
-
return None
|
39 |
-
|
40 |
-
try:
|
41 |
-
image_pil = Image.fromarray(image)
|
42 |
-
with torch.no_grad():
|
43 |
-
results = model(image_pil)
|
44 |
-
|
45 |
-
rendered_images = results.render()
|
46 |
-
return np.array(rendered_images[0]) if rendered_images else image
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error processing image: {e}")
|
50 |
-
return image
|
51 |
-
|
52 |
# Create Gradio UI
|
53 |
with gr.Blocks(title="Real-Time Object Detection") as app:
|
54 |
-
gr.Markdown("# Real-Time Object Detection
|
55 |
|
56 |
with gr.Tabs():
|
57 |
# 📷 Live Webcam Tab
|
58 |
with gr.TabItem("📷 Live Camera"):
|
59 |
with gr.Row():
|
60 |
-
webcam_input = gr.
|
61 |
live_output = gr.Image(label="Processed Feed")
|
62 |
|
63 |
-
# Process frame when new frame is available
|
64 |
webcam_input.change(process_frame, inputs=webcam_input, outputs=live_output)
|
65 |
|
66 |
# 🖼️ Image Upload Tab (With Submit Button)
|
@@ -70,6 +51,6 @@ with gr.Blocks(title="Real-Time Object Detection") as app:
|
|
70 |
submit_button = gr.Button("Submit")
|
71 |
upload_output = gr.Image(label="Detection Result")
|
72 |
|
73 |
-
submit_button.click(
|
74 |
|
75 |
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Device configuration
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
|
9 |
+
# Load YOLOv5 model
|
10 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
11 |
|
12 |
# Set model confidence threshold
|
|
|
15 |
model.half()
|
16 |
|
17 |
def process_frame(image):
|
18 |
+
"""Process a video frame or image and apply YOLOv5 object detection."""
|
19 |
if image is None:
|
20 |
return None
|
21 |
|
|
|
31 |
print(f"Error processing frame: {e}")
|
32 |
return image
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Create Gradio UI
|
35 |
with gr.Blocks(title="Real-Time Object Detection") as app:
|
36 |
+
gr.Markdown("# Real-Time Object Detection")
|
37 |
|
38 |
with gr.Tabs():
|
39 |
# 📷 Live Webcam Tab
|
40 |
with gr.TabItem("📷 Live Camera"):
|
41 |
with gr.Row():
|
42 |
+
webcam_input = gr.Video(label="Live Feed")
|
43 |
live_output = gr.Image(label="Processed Feed")
|
44 |
|
|
|
45 |
webcam_input.change(process_frame, inputs=webcam_input, outputs=live_output)
|
46 |
|
47 |
# 🖼️ Image Upload Tab (With Submit Button)
|
|
|
51 |
submit_button = gr.Button("Submit")
|
52 |
upload_output = gr.Image(label="Detection Result")
|
53 |
|
54 |
+
submit_button.click(process_frame, inputs=upload_input, outputs=upload_output)
|
55 |
|
56 |
app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
|