Aumkeshchy2003 commited on
Commit
a32f6c3
·
verified ·
1 Parent(s): b5a364c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -28
app.py CHANGED
@@ -15,42 +15,28 @@ model.conf = 0.5
15
  if device.type == 'cuda':
16
  model.half()
17
 
18
- def process_frame(video):
19
- """Reads a frame from the webcam video stream and applies YOLOv5 detection."""
20
- cap = cv2.VideoCapture(video) # Open the webcam stream
21
-
22
- if not cap.isOpened():
23
- print("Error: Could not open video stream.")
24
- return None
25
-
26
- ret, frame = cap.read()
27
- cap.release()
28
-
29
- if not ret:
30
- print("Error: Could not read frame.")
31
  return None
32
 
33
  try:
34
- print("Processing frame...")
35
- image_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
36
-
37
  with torch.no_grad():
38
  results = model(image_pil)
39
 
40
  rendered_images = results.render()
41
- processed_image = np.array(rendered_images[0]) if rendered_images else frame
42
- print("Frame processed successfully!")
43
- return processed_image
44
 
45
  except Exception as e:
46
- print(f"Processing error: {e}")
47
- return frame
48
 
49
  def process_uploaded_image(image):
50
- """Processes the uploaded image and applies YOLOv5 object detection."""
51
  if image is None:
52
  return None
53
-
54
  try:
55
  image_pil = Image.fromarray(image)
56
  with torch.no_grad():
@@ -58,7 +44,7 @@ def process_uploaded_image(image):
58
 
59
  rendered_images = results.render()
60
  return np.array(rendered_images[0]) if rendered_images else image
61
-
62
  except Exception as e:
63
  print(f"Error processing image: {e}")
64
  return image
@@ -71,17 +57,19 @@ with gr.Blocks(title="Real-Time Object Detection") as app:
71
  # 📷 Live Webcam Tab
72
  with gr.TabItem("📷 Live Camera"):
73
  with gr.Row():
74
- webcam_input = gr.Video(label="Live Feed")
75
  live_output = gr.Image(label="Processed Feed")
76
- webcam_input.stream(process_frame, inputs=webcam_input, outputs=live_output)
 
 
77
 
78
  # 🖼️ Image Upload Tab (With Submit Button)
79
  with gr.TabItem("🖼️ Image Upload"):
80
  with gr.Row():
81
  upload_input = gr.Image(type="numpy", label="Upload Image")
82
- submit_button = gr.Button("Submit")
83
  upload_output = gr.Image(label="Detection Result")
84
 
85
- submit_button.click(process_uploaded_image, inputs=upload_input, outputs=upload_output)
86
 
87
  app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)
 
15
  if device.type == 'cuda':
16
  model.half()
17
 
18
+ def process_frame(image):
19
+ """Processes a frame from the webcam and applies YOLOv5 object detection."""
20
+ if image is None:
 
 
 
 
 
 
 
 
 
 
21
  return None
22
 
23
  try:
24
+ image_pil = Image.fromarray(image)
 
 
25
  with torch.no_grad():
26
  results = model(image_pil)
27
 
28
  rendered_images = results.render()
29
+ return np.array(rendered_images[0]) if rendered_images else image
 
 
30
 
31
  except Exception as e:
32
+ print(f"Error processing frame: {e}")
33
+ return image
34
 
35
  def process_uploaded_image(image):
36
+ """Processes an uploaded image and applies YOLOv5 object detection."""
37
  if image is None:
38
  return None
39
+
40
  try:
41
  image_pil = Image.fromarray(image)
42
  with torch.no_grad():
 
44
 
45
  rendered_images = results.render()
46
  return np.array(rendered_images[0]) if rendered_images else image
47
+
48
  except Exception as e:
49
  print(f"Error processing image: {e}")
50
  return image
 
57
  # 📷 Live Webcam Tab
58
  with gr.TabItem("📷 Live Camera"):
59
  with gr.Row():
60
+ webcam_input = gr.Image(source="webcam", label="Live Feed")
61
  live_output = gr.Image(label="Processed Feed")
62
+
63
+ # Process frame when new frame is available
64
+ webcam_input.change(process_frame, inputs=webcam_input, outputs=live_output)
65
 
66
  # 🖼️ Image Upload Tab (With Submit Button)
67
  with gr.TabItem("🖼️ Image Upload"):
68
  with gr.Row():
69
  upload_input = gr.Image(type="numpy", label="Upload Image")
70
+ submit_button = gr.Button("Submit")
71
  upload_output = gr.Image(label="Detection Result")
72
 
73
+ submit_button.click(process_uploaded_image, inputs=upload_input, outputs=upload_output)
74
 
75
  app.queue().launch(server_name="0.0.0.0", server_port=7860, share=False)