Spaces:
Running
Running
import torch | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
import random | |
# Load YOLOv5 model | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device) | |
model.eval() | |
# Use half-precision if CUDA is available | |
if device.type == 'cuda': | |
model.half() | |
# Get class names | |
CLASS_NAMES = model.names | |
# Assign random colors for each class | |
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES} | |
def detect_objects(image): | |
"""Detect objects in an image using YOLOv5 with optimized inference speed.""" | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV | |
img_resized = cv2.resize(image, (640, 640)) # Resize for faster processing | |
img_tensor = torch.from_numpy(img_resized).to(device).float() / 255.0 # Normalize | |
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0) # Convert to batch format | |
if device.type == 'cuda': | |
img_tensor = img_tensor.half() # Use half precision for speed | |
# Run model inference | |
with torch.no_grad(): | |
results = model(img_tensor) | |
detections = results.xyxy[0].cpu().numpy() | |
for x1, y1, x2, y2, conf, cls in detections: | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
class_name = CLASS_NAMES[int(cls)] | |
confidence = conf * 100 | |
color = CLASS_COLORS[class_name] | |
# Draw bounding box | |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 3) | |
# Label | |
label = f"{class_name} ({confidence:.1f}%)" | |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="numpy", label="Upload Image"), | |
outputs=gr.Image(type="numpy", label="Detected Objects"), | |
title="Fast Object Detection with YOLOv5", | |
description="Use webcam or upload an image for object detection results.", | |
allow_flagging="never" | |
) | |
# Launch the app | |
iface.launch() | |