Aumkeshchy2003's picture
Update app.py
f54253a verified
raw
history blame
2.17 kB
import torch
import cv2
import numpy as np
import gradio as gr
import random
# Load YOLOv5 model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device)
model.eval()
# Use half-precision if CUDA is available
if device.type == 'cuda':
model.half()
# Get class names
CLASS_NAMES = model.names
# Assign random colors for each class
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
def detect_objects(image):
"""Detect objects in an image using YOLOv5 with optimized inference speed."""
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
img_resized = cv2.resize(image, (640, 640)) # Resize for faster processing
img_tensor = torch.from_numpy(img_resized).to(device).float() / 255.0 # Normalize
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0) # Convert to batch format
if device.type == 'cuda':
img_tensor = img_tensor.half() # Use half precision for speed
# Run model inference
with torch.no_grad():
results = model(img_tensor)
detections = results.xyxy[0].cpu().numpy()
for x1, y1, x2, y2, conf, cls in detections:
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
class_name = CLASS_NAMES[int(cls)]
confidence = conf * 100
color = CLASS_COLORS[class_name]
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), color, 3)
# Label
label = f"{class_name} ({confidence:.1f}%)"
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
# Gradio Interface
iface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title="Fast Object Detection with YOLOv5",
description="Use webcam or upload an image for object detection results.",
allow_flagging="never"
)
# Launch the app
iface.launch()