Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,52 +2,64 @@ import torch
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
import random
|
7 |
|
|
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
-
|
10 |
-
# Use a smaller model for faster inference
|
11 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
|
12 |
model.eval()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
CLASS_NAMES = model.names
|
15 |
-
random.seed(42)
|
16 |
-
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
return image
|
21 |
|
22 |
def detect_objects(image):
|
23 |
-
image
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
color = CLASS_COLORS[class_name]
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
label = f"{class_name} ({confidence:.1f}%)"
|
38 |
-
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
39 |
-
1, color, 3, cv2.LINE_AA)
|
40 |
|
41 |
-
return image
|
42 |
|
|
|
43 |
iface = gr.Interface(
|
44 |
fn=detect_objects,
|
45 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
46 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
47 |
-
title="Object Detection with YOLOv5",
|
48 |
-
description="Use webcam or upload an image
|
49 |
-
allow_flagging="never"
|
50 |
-
examples=["examples/spring_street_after.jpg", "examples/pexels-hikaique-109919.jpg"]
|
51 |
)
|
52 |
|
|
|
53 |
iface.launch()
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
import random
|
6 |
|
7 |
+
# Load YOLOv5 model
|
8 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True).to(device)
|
|
|
|
|
10 |
model.eval()
|
11 |
|
12 |
+
# Use half-precision if CUDA is available
|
13 |
+
if device.type == 'cuda':
|
14 |
+
model.half()
|
15 |
+
|
16 |
+
# Get class names
|
17 |
CLASS_NAMES = model.names
|
|
|
|
|
18 |
|
19 |
+
# Assign random colors for each class
|
20 |
+
CLASS_COLORS = {cls: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for cls in CLASS_NAMES}
|
|
|
21 |
|
22 |
def detect_objects(image):
|
23 |
+
"""Detect objects in an image using YOLOv5 with optimized inference speed."""
|
24 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
|
25 |
+
img_resized = cv2.resize(image, (640, 640)) # Resize for faster processing
|
26 |
+
img_tensor = torch.from_numpy(img_resized).to(device).float() / 255.0 # Normalize
|
27 |
+
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0) # Convert to batch format
|
28 |
|
29 |
+
if device.type == 'cuda':
|
30 |
+
img_tensor = img_tensor.half() # Use half precision for speed
|
31 |
|
32 |
+
# Run model inference
|
33 |
+
with torch.no_grad():
|
34 |
+
results = model(img_tensor)
|
35 |
+
|
36 |
+
detections = results.xyxy[0].cpu().numpy()
|
37 |
+
|
38 |
+
for x1, y1, x2, y2, conf, cls in detections:
|
39 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
40 |
+
class_name = CLASS_NAMES[int(cls)]
|
41 |
+
confidence = conf * 100
|
42 |
|
43 |
color = CLASS_COLORS[class_name]
|
44 |
|
45 |
+
# Draw bounding box
|
46 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 3)
|
47 |
+
|
48 |
+
# Label
|
49 |
label = f"{class_name} ({confidence:.1f}%)"
|
50 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
|
|
|
51 |
|
52 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
|
53 |
|
54 |
+
# Gradio Interface
|
55 |
iface = gr.Interface(
|
56 |
fn=detect_objects,
|
57 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
58 |
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
59 |
+
title="Fast Object Detection with YOLOv5",
|
60 |
+
description="Use webcam or upload an image for object detection results.",
|
61 |
+
allow_flagging="never"
|
|
|
62 |
)
|
63 |
|
64 |
+
# Launch the app
|
65 |
iface.launch()
|